550 likes | 649 Vues
Dive into the essential concepts of microbial genetics, from DNA structure to gene expression through transcription and translation. Understand the central dogma of molecular biology and explore the control of gene expression in eukaryotic cells. Explore the basics of genetic control and delve into the intricate mechanisms underlying microbial genetics.
E N D
What is genetics? • Study of inheritance and traits expressed in the genetic material of the organism. • GENOTYPE: genetic “make-up” of the organism • PHENOTYPE: expression of the genotype - the organism and its traits.
Genome • Entire genetic compliment of the organism. • DNA - all prokaryotes and eukaryotes • DNA or RNA - viruses
Structure of DNA • Until 1953 the exact structure of DNA was unknown. • James Watson and Francis Crick discovered the structure of DNA. • In 1962, Crick, Watson, and another researcher named Wilkins were awarded the Nobel prize of this work.
The Watson-Crick model • The model proposes the following: • DNA molecule is a double helix • The “backbone” of the helix is composed of the sugar, deoxyribose, alternating with a phosphate group • Four nitrogenous bases form the interior “ladder” of the molecule and carry the genetic code for life
Nitrogen Bases in DNA • Adenine, thymine, guanine, cytosine • The bases ALWAYS pairs as follows: • Adenine-Thymine • Guanine-Cytosine • Base pairs are held together by hydrogen bonds
Key Terminology • 1. REPLICATION – new copy of DNA being made • 2. TRANSCRIPTION – gene being copied from DNA sequence into messenger RNA • 3. TRANSLATION – mRNA read and protein produced
DNA Replication(the secret is in the base pairing) • 3’ A-T-G-G-C-T-G-T-C-G-G-C-T 5’ • 5’ T-A-C-C-G-A-C-A-G-C-C-G-A 3’ • The strands run ANTI-PARALLEL • DNA Replication is said to be SEMI-CONSERVATIVE • http://highered.mcgraw-hill.com/olcweb/cgi/pluginpop.cgi?it=swf::535::535::/sites/dl/free/0072437316/120076/bio22.swf::Meselson and Stahl Experiment
Structure of deoxyribose • The carbons are numbered 1’ to 5’ • The phosphate is linked to the sugar between the 3’ and 5’ carbons • Sugar – phosphate backbone
5’ and 3’ ends of DNA • The 5’ end has the free phosphate (P) • The 3’ end is the free OH end • The strands are anti-parallel
Direction of replication • DNA replication proceeds 5’→ 3’ • A free 3’ end is needed to add another nucleotide
DNA Replication • 1. The molecule “unzips” to expose free ends. One is the 3’ end the other is the 5’ end • 2. DNA synthesis can now begin • 3. Synthesis on the free 3’ end is CONTINUOUS, this is called the LEADING STRAND • 4. Synthesis on the free 5’ end is DISCONTINUOUS, this is the LAGGING STRAND • 5. The enzyme that is responsible for DNA synthesis on BOTH strands is DNA polymerase BUT this enzyme requires a free 3’ end at which it can add new bases!
DNA Replication(continued) • 6. Synthesis of the lagging strand is in short segments of DNA, about 1000 bases • 7. These short segments are called OKAZAKI FRAGMENTS • 8. The enzyme DNA ligase seals the gaps between these fragments to produce a gaps free discontinuous strand
Types of RNA • 1. Messenger RNA (mRNA) • 2. Ribosomal RNA (rRNA) • 3. Transfer RNA (tRNA)
Transcription • 1. This is the process of making a copy of a gene (sequence of DNA that codes for a protein or functional product) • 2. The enzyme responsible for this process is RNA POLYMERASE • 3. Copies the gene is a 5’→ 3’ direction • 4. Gene transcription begins at a site called the PROMOTER and ends at another site called the TERMINATOR
Example of transcription and translation • 3’ TACAGAGTACGAACT 5’ (antisense) this is copied • 5’ ATGTCTCATGCTTGA 3’ (sense) • 5’ AUG|UCU|CAU|GCU|UGA 3’ mRNA (gene copy) • 3 bases = codon = amino acid • Met-ser-his-ala-stop Protein • 3’strand of DNA is the TEMPLATE or ANTISENSE strand THE STRAND THAT IS COPIED! • 5’ strand of DNA is the INFORMATIONAL or SENSE strand
Another example of transcription • 3’ GGGGGGGGGGGGGGG 5’ anti-sense • 5’ CCCCCCCCCCCCCCC 3’ sense Transcription (anti-sense) 5’ CCCCCCCCCCCCCCC 3’ Translation Pro-pro-pro-pro-pro-pro- Remember-copy the 3’ strand and by the rules of base paring you get the sense strand sequence!
Exons and Introns • 1. These are terms unique to eukaryotic cells • 2. EXONS are information regions in DNA that must be expressed • 3. INTRONS are non-coding regions in DNA that are not expressed
Control of Gene Expression • 1. Control is at the level of TRANSCRIPTION • 2. Genes that are NOT needed are NOT expressed, i.e., the gene is not transcribed • 3. Many genes are always expressed because the cell always needs the gene product • 4. Such genes are CONSTITUTIVE
Genetic Control • 1. REPRESSION – inhibition of gene expression • 2. INDUCTION – switching on gene expression
Model of Inducible Gene System • Lactose operon • OPERON is defined as a set of operator and promoter sites and the genes that they control • Described in E. coli by Francois Jacob and Jacques Monod • Genetic ON/OFF switch
Mutations • Change in the base sequence of DNA • May or may not have an effect on the organism • The potential magnitude of the change depends on the gene affected
TACTTCAAACCGATT AUGAAGUUUGGCUAA Met-lys-phe-gly-stop TACTTCAAATCGATT AUGAAGUUUAGCUAA Met-lys-phe-ser-stop MISSENSE MUTATION BASE SUBSTITUTION
TACTTCAAACCGATT AUGAAGUUUGGCUAA Met-lys-phe-gly-stop TACATCAAACCGATT AUGUAGUUUGGCUAA Met-STOP NONSENSE MUTATION BASE SUBSTITUTION
TACTTCAAACCGATT AUGAAGUUUGGCUAA Met-lys-phe-gly-stop TACTTCAACCGATT AUGAAGUUGGCUAA…. Met-lys-leu-ala…. FRAMESHIFT MUTATION BASE DELETION
Bacterial SEX!!! • 1. Transformation • 2. Conjugation • 3. Transduction