Download
kinematika n.
Skip this Video
Loading SlideShow in 5 Seconds..
Kinematika PowerPoint Presentation

Kinematika

257 Views Download Presentation
Download Presentation

Kinematika

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Kinematika

  2. Mechanika Mechanika se zabývá mechanickým pohybem Dělí se na: Kinematiku: popisuje pohybu těles Dynamiku: popisuje příčiny pohybu těles

  3. Klid a pohyb Klid nebo pohyb tělesa určujeme vzhledem k jiným tělesům. Stav klidu nebo pohybu těles je vždy relativní. Neexistuje těleso, které by bylo v absolutním klidu. Vztažná soustava = soustava těles, ke které vztahujeme klid nebo pohyb tělesa.

  4. Hmotný bod • Můžeme jím nahradit každé těleso, jehož rozměry lze vzhledem k uvažovaným vzdálenostem zanedbat • Má hmotnost rovnou hmotnosti tělesa, jehož nahrazuje • Pohyb hmotného bodu se popisuje veličinami: dráha, rychlost, zrychlení

  5. Trajektorie = souvislá čára, kterou opisuje hmotný bod při mechanickém pohybu

  6. Dělení pohybů podle tvaru trajektorie Přímočarý pohyb – trajektorie je přímka Křivočarý pohyb – trajektorie je křivka zvláštní příklad křivočarého pohybu je pohyb hmotného bodu po kružnici Tvar trajektorie hmotného bodu závisí na volbě vztažné soustavy

  7. Dráha = délka trajektorie opsaná hmotným bodem při jeho pohybu Značí se s Jednotka dráhy - metr

  8. příklad

  9. Příklad Doplňte tabulku

  10. Dráha je funkcí času

  11. Rychlost hmotného bodu

  12. Průměrná rychlost Průměrnou rychlost hmotného bodu určíme jako podíl jeho dráhy a odpovídající doby Jednotka

  13. Dělení pohybů z hlediska rychlosti • Rovnoměrný pohyb • Nerovnoměrný pohyb

  14. Rovnoměrný pohyb • Hmotný bod urazí ve stejných časových intervalech stejné dráhy. • Rychlost je konstantní. • Dráha se vypočte podle vzorečku s = v.t • Graf závislosti dráhy na čase je přímka. • Nejjednodušší rovnoměrný pohyb je pohyb rovnoměrný přímočarý

  15. Dráha je funkcí času

  16. Nerovnoměrný pohyb • Hmotný bod urazí ve stejných časových intervalech různé dráhy • Rychlost není konstantní, mění se během pohybu

  17. Okamžitá rychlost • Je rychlost, kterou má hmotný bod v určitém okamžiku v určitém místě trajektorie. • Během pohybu může měnit rychlost nejen velikost, ale i směr. • Okamžitá rychlost je vektorová veličina • Znázorňujeme ji orientovanou úsečkou, jejíž délka vyjadřuje velikost rychlosti a její poloha směr rychlosti

  18. Zrychlení hmotného bodu = změna rychlosti za jednotku času značí se a = změna rychlosti jednotka:

  19. Rovnoměrně zrychlený pohyb = nejjednodušší nerovnoměrný pohyb Jedná se o pohyb se stálým zrychlením. Počáteční rychlost: v0 Zrychlení : a Okamžitá rychlost v čase t: Je-li počáteční rychlost v0 = 0 Okamžitá rychlost v čase t:

  20. Vzorce ke grafu

  21. Rovnoměrně zpomalený pohyb

  22. Dráha rovnoměrně zrychleného pohybu S nulovou počáteční rychlostí

  23. Volný pád = rovnoměrně zrychlený pohyb Zrychlení volného pádu = tíhové zrychlení. Značí se g . Tíhové zrychlení je vektorová veličina, která má svislý směr. Pro naši zeměpisnou šířku má hodnotu 9,81 m/s2. Na pólech g = 9,83 m/s2. Na rovníku g = 9,78 m/s2.

  24. Okamžitá rychlost a dráha volného pádu

  25. Skládání pohybů

  26. Vektorový součet Výsledná rychlost je vektorovým součtem rychlostí a Určíme ji jako úhlopříčku vektorového rovnoběžníku

  27. Pohyb loďky - příklad

  28. Princip nezávislosti pohybů • koná-li hmotný bod dva nebo více pohybů, je jeho výsledná poloha taková, jako kdyby konal tyto pohyby po sobě, a to v libovolném pořadí

  29. Pohyb hmotného bodu po kružnici

  30. Pohyb hmotného bodu po kružnici r……délka průvodiče φ.......úhlová dráha = středový úhel, který opíše průvodič hmotného bodu za určitou dobu t, měří se v radiánech (360° = 2Π) s……dráha

  31. Úhlová rychlost Značí se ω t………………doba pohybu Jednotka …………1/s = s-1 nebo radián za sekundu - rad/s

  32. Rovnoměrný pohyb po kružnici koná hmotný bod, jestliže ve stejných časových intervalech opíše jeho průvodič stejné úhlové dráhy => ω = konst.

  33. Rychlost v hmotného bodu Značí se v Je to vektor - v každém místě trajektorie má směr tečny ke kružnici.

  34. Rychlost v hmotného bodu