1 / 65

奈良女子大学大学院 人間文化研究科 博士後期課程 3 年 複合現象科学専攻 高エネルギー物理学研究室 藤川 美幸希

Measurement of Branching Fraction and Time-dependent CP Asymmetry Parameters in B 0  K 0 p 0 De c ays. Introduction Experimental Apparatus Analysis Event Reconstruction Branching Fraction Measurement Time-dependent CP Analysis Summary . 奈良女子大学大学院 人間文化研究科 博士後期課程 3 年

paiva
Télécharger la présentation

奈良女子大学大学院 人間文化研究科 博士後期課程 3 年 複合現象科学専攻 高エネルギー物理学研究室 藤川 美幸希

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measurement of Branching Fraction and Time-dependent CP Asymmetry Parametersin B0K0p0 Decays • Introduction • Experimental Apparatus • Analysis • Event Reconstruction • Branching Fraction Measurement • Time-dependent CP Analysis • Summary 奈良女子大学大学院 人間文化研究科 博士後期課程3年 複合現象科学専攻 高エネルギー物理学研究室 藤川 美幸希

  2. Introduction - CP violation Big Bang = Matter Anti-matter Matter Anti-matter ≫ Present CP violation is one of the necessary condition to explain the baryon asymmetry in universe C (Charge conjugation) : P (Parity) : CP violation Asymmetry btw Particle and anti-particle 公聴会

  3. Introduction - CP violation • First observation of CP violationin neutral kaon system CP eigenvalue Short lifetime : KSpp+1 Long lifetime : KLppp−1 • If CP is conserved, KLppis forbidden But… KL ppexperimentally observed J. H. Christenson et al. Phys. Rev. Lett. 13, 138 (1964) 公聴会

  4. Introduction - CKM matrix Kobayashi-Maskawa Theory Prog. Theor. Phys. 49, 652(1973) The 2008 Physics Nobel Prize • CP violation in Standard model can be explained • by 3 quark generations Irreducible complex phase ⇒can violate CP 公聴会

  5. Introduction - CKM matrix • Triangle lengths ⇒ large CP violation possible • Unitarity of CKM matrix ⇒ Related to B decays • Independent measurement for 3 lengths and • angles important for complete test of CKM model • or for search of new mechanism 公聴会

  6. Introduction – How to measure CPV in B0 system? • Two different amplitude is necessary to observe • CP violating phase • In B system, there is two sources of CP violation • Mixing induced CP violation • Direct CP violation Interference between B decays with and without mixing where fcp is CP eigenstate Example of fcp; J/yK0, K0p0,p+p-,,, 公聴会

  7. Introduction – Mixing-induced CP violation fCP ① B0 mixing ② B0 ① B fCP fCP ① ② ② B B fCP mixing Interference between B decays with and without mixing  Mixing-induced CP Violation 公聴会

  8. Introduction – Mixing-induced CP violation fCP fCP ① B0 B0 CP mixing mixing ② B0 B0 ① B fCP fCP ① ② ② B B fCP mixing Interference between B decays with and without mixing  Mixing-induced CP Violation 公聴会

  9. Introduction – Direct CP violation • Decay amplitudes: • CP violating asymmetry (ACP) is defined as: • A non-zero ACP requires the following 3 conditions: • more than 2 decay amplitudes • non-zero strong phase difference :I - j= ≠ 0 • non-zero weak phase difference : φi-φj = φ≠ 0  Direct CP Violation 公聴会

  10. Introduction –Direct + mixing-inducedCP violation 1 Physical Region -1 1 -1 B0K0p0case mixing-induced CP Violation parameter Direct CP Violation parameter Need to measure time-dependence 公聴会

  11. Introduction – Coherent B0B0 production fCP CP eigenstate Dz bg ~ 0.425 Flavour tag ;q (EPR paradox) BTag 公聴会

  12. Introduction – Status of CPV measurement in B0J/yK0 B0 tag _ B0 tag hep-ex/0608039, PRL Clear CP violation observed in mixing –induced CPV process bc transition B0J/yK0 B0-B0Mixing sin2f1= 0.642 ±0.031 (stat) ±0.017 (syst) A = 0.018 ±0.021 (stat) ±0.014 (syst) 公聴会

  13. Introduction – CP violation in B0K0p0 ? s b s KS b KS d d d d p0 d p0 d d d bs transition proceeds via second order decay process Penguin diagram in Standard Model Penguin diagram with new physics bs modes sensitive to New Physics 公聴会

  14. Introduction – CP violation in B0K0p0 B0J/yK0 bc bs 公聴会

  15. Introduction – Direct CP violation status Nature 452, 332-335(2008) B0K+p- B0K-p+ w/ 535MBB First evidence of direct CP violation in B system • ACP(B0K+p-) = –0.094±0.018±0.008 4.8s • ACP(B+K+p0) = + 0.07 ±0.03 ±0.01 公聴会

  16. Introduction – Prediction for direct CPV in B0K0p0 Isospin sum rule among BKp CP asymmetries M. Gronau, PLB 672(2005)82-88) Standard Model prediction • Prediction from SM • ACP(K0p0) =-0.148±0.044 • Breaking sum rule indicates • New Physics • Good test for Standard Model measurement 公聴会

  17. Experimental Apparatus KEKB Accelerator & Belle Detector

  18. KEKB Accelerator Belle Detector e- e+ • Why asymmetric collider? • Increase BB separation, • B flight length ~ 200mm 3km circumference 公聴会

  19. Performance of KEKB • Peak luminosity L = 1.7118×1034 /cm/s • Integrated Luminosity Integrated luminosity (fb-1) 2006 summer 605 fb-1=657MBBpair year 公聴会

  20. Belle detector SC solenoid 1.5T Aerogel Cherenkov cnt. (ACC) CsI(Tl) Calorimeter (ECL) 3.5 GeV e+ Time of Flight (TOF) 8 GeVe- Central Drift Chamber (CDC) m/ KL detector (KLM) Si vtx. detector (SVD) 公聴会

  21. Belle sub-detector 公聴会

  22. SVD – Configuration • In summer 2003, SVD1 was replaced with SVD2 23º<q<139º SVD1 x-z plane 3 layers e+ e- SVD2 17º<q<150º 4 layers • First 152×106BB pairs collected with SVD1 • Remaining 505×106BB pairs collected with SVD2 公聴会

  23. Event Reconstruction

  24. Event Reconstruction B0K0p0 B0 KSp0 B0 KLp0 (mentioned later) 公聴会

  25. Event Reconstruction – KS two p angle should be small Long flight < 30 mrad IP 0.480 < m(p+p-) < 0.516 GeV/c2 0 KS is reconstructed from two charged p • Invariant mass • The smaller of dr1 and dr2, the shortest distance between the two KS daughter tracks and the IP (dr) • The azimuthal angle between the momentum vector and decay vertex vector of a KS candidate (df) • The distance between the two KS daughter tracks at their point of interception (z_dist) • The flight length of a KS candidate in the x-y plane (fl) 公聴会

  26. Event Reconstruction – p0 p0 reconstructed from two g • Eg > 50MeV in Barrel, Eg > 100MeV in End-cap region • Energy of photon • Invariant mass • Mass-constrained fit c2 • Angle between p0 in the B rest frame and g momentum in the p0 rest frame 0.115< M(p0 )<0.152 GeV/c2 • c2<50 • cosq <0.95 公聴会

  27. Event Reconstruction – B0KSp0 CMS : Υ(4S) rest frame Ebeam: Beam energy EB : Reconstructed B energy PB : Reconstructed B momentum 2 kinematic variables B0 e+ e- Y(4S) B0 Signal MC 公聴会

  28. Event Reconstruction – Continuum suppression e+e-U(4S)BB (Spherical) e+e- qq (Jet-like) Main background ⇒ continuum (e+e-qq) cosqB: polar angle of B in CMS Fox-Wolfram moments : Event shape variables Combine variables 0.3<LS/B signal retained : 91% background rejected : 71% 公聴会

  29. Event Reconstruction – B0 Signal 公聴会

  30. Branching Fraction Measurement

  31. Branching Fraction – Basic formula • Reconstruction efficiency obtained from Signal MC Consider difference between data and MC : • We use 657×106 BB events 公聴会

  32. Branching Fraction – Experimental Results • Mbc, DE, LS/B distribution from data How to estimation Signal yield? need to determine the signal shape & background shape 公聴会

  33. Branching Fraction – Signal PDF Probability Density Function • Mbc, DE, LS/B correlated • Can’t fit with 1D×1D×1D functions • Use 3D histogram PDF 公聴会

  34. Branching Fraction – BB background PDF • Mainly from BKpp, BK*p ,,, • Use 3D histogram PDF 公聴会

  35. Branching Fraction – Total PDF • qq background PDF • Total likelihood • Extended unbinned maximum likelihood fit • Free parameters • Branching Fraction( ), Nbkg • Argus shape, Poly1st shape • fqq 公聴会

  36. Branching Fraction – Fit result  -0.15<DE<0.1 ; 0.7<L Signal yield ; 634±37 -0.15<DE<0.1 ; 5.27< Mbc <5.29 5.27 <Mbc <5.29 ; 0.7<L 公聴会

  37. Branching Fraction – Result + 0.51 + 0.46 B(B0K0p0)=[8.72 (stat) (syst)]×10-6 -0.50 -0.40 • Agree with current world average B(B0K0p0)=(9.8±0.6)×10-6 • Systematic Uncertainty 公聴会

  38. Time-dependent CP Analysis

  39. CP Analysis – Principle of Measurement Measured Dt True Dt D t (ps) Dt (ps) Evaluate CP asymmetry from the Dt and q fCP CP eigenstate Dz bg ~ 0.425 Flavour tag ;q • Smeared by • Detector resolution • Wrong flavor tag effect 公聴会

  40. CP Analysis – Vertex reconstruction p- p+ B decays vertices are reconstructed using the tracks coming from their decay particles using kinematical vertex fit. • IP (interaction point) tube constraint fit • No primary tracks from B vertex • Extrapolate KS track to the Interaction Point • Events without the vertex can still be used to measure A 公聴会

  41. CP Analysis – Flavour Tagging • For the BCP-Btag coherency originated from U(4S) decay, Btag flavour determines BCP flavour (B0 or B0) at Btag decay time. • Flavour information is determined from Btag decay products. • Inclusive Leptons: • high-p l • intermed-p l+ High-p l- → B0 High-p l+ → B0 K- → B0 K+ → B0 p- → B0 p+ → B0

  42. CP Analysis –Treatment of vertex resolution B B Dz [NIM A533: 370,2004] g p0 Bgen Brec g We understand the following resolution components: • Detector resolution: • Effect of non-primary particles: • Kinematic approximation of B0 flight: Residuals=Zrec ― Zgen Ks Tag-side only l Btag Non-primary particles D 公聴会

  43. CP Analysis – Maximum Likelihood fit 1 Background Signal Next slide Signal fraction Signal PDF Resolution Wrong flavor tag effect Maximum Likelihood Fit 公聴会

  44. CP Analysis – Maximum Likelihood fit 2 Background PDF qq Finite lifetime of D meson and short lived particles 5.20 < Mbc < 5.26 GeV/c2 0.05 < DE < 0.20 GeV Sideband region B+B- Charged B MC B0B0 Neutral B MC 公聴会

  45. CP Analysis – Inclusion of B0KLp0 • KLis detected by KLM hits and/or ECL hits • Cannot measure decay vertex of KLp0 • Time-integrated PDF is used to measure ACP Wrong flavor tag effect 公聴会

  46. CP Analysis – Final Results ACP = + 0.14±0.13(stat)±0.06(syst) SCP = + 0.67±0.31(stat)±0.08(syst) eff 公聴会

  47. CP Analysis – Systematic Uncertainty 公聴会

  48. Summary & Discussion

  49. Summary + 0.51 + 0.46 B(B0K0p0)=[8.72 (stat) (syst)]×10-6 -0.50 -0.40 We have measured Branching Fraction and Time-dependent CP Violation Parameters of B0K0p0 from 657×106 BB pairs ACP = + 0.14±0.13(stat)±0.06(syst) SCP = + 0.67±0.31(stat)±0.08(syst) eff • SCP ; Consistent with B0J/yK0 (bc transition modes) • ACP ; No evidence for direct CP violation 公聴会

  50. Discussion – Compare with other experiment Isospin sum rule expectation eff SCP BaBar 0.55 0.200.03 Belle 0.67 0.31 0.08 Average 0.57 0.17 CCP= - ACP BaBar 0.13 0.130.03 Belle - 0.14 0.13 0.06 Average 0.01  0.10 • Our ACP result ; 1.9s deviation from isospin sum rule 公聴会

More Related