1 / 85

BASIC ECG

BASIC ECG. Dr. Gülay ÇİLER ERDAĞ. Dersin amaçları: Ekgnin tanıtılması EKGnin kullanım alanları hakkında bilgi verimesi EKGnin nasıl çekileceği hakkında bilgi verimesi Ekg nin çalışma prensipleri hakkında bilgi verilmesi EKG kağıdı hakında bilgi verilmesi

Télécharger la présentation

BASIC ECG

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BASIC ECG Dr. Gülay ÇİLER ERDAĞ

  2. Dersin amaçları: • Ekgnin tanıtılması • EKGnin kullanım alanları hakkında bilgi verimesi • EKGnin nasıl çekileceği hakkında bilgi verimesi • Ekg nin çalışma prensipleri hakkında bilgi verilmesi • EKG kağıdı hakında bilgi verilmesi • Kalp hızının hesplanması hakkında bilgi verilmesi • Kalp ritminin değerlendirlmesi hakkında bilgi verilmesi • P-r aralığı hesaplanması, p, ors ve r dalgalarının yapısı ve süreleri hakkında bilgi verilmesi • Aks hesaplanması hakkında bilgi verilmesi amaçlanmştır.

  3. Dersin hedefleri: • Öğrencilerin ders sonunda, çocuklarda ne zaman, ne amaçla EKG çekmeleri gerektiği konusunda bilgi sahibi olmaları • Çekilmiş olan bir EKG kağıdına bakarak kalp hızını, Kalp ritmini, kalbin aksını hesaplayabilmeleri, • Varsa p, ors , t dalgalrındaki yapısal bozuklukları farkedebilmeleri, • Varsa kalp bloklarını farkedebilmeleri • Elektrolit bozukluklarına bağlı ortaya çıkabilecek EKG değişikliklerini saptayabilmeleri

  4. On

  5. Learning Modules • ECG Basics • How to Analyze a Rhythm • Normal Sinus Rhythm • Heart Arrhythmias • Advanced 12-Lead Interpretation

  6. Normal Impulse Conduction Sinoatrial node AV node Bundle of His Bundle Branches Purkinje fibers

  7. Impulse Conduction & the ECG Sinoatrial node AV node Bundle of His Bundle Branches Purkinje fibers

  8. The “PQRST” • P wave - Atrial depolarization • QRS - Ventricular depolarization • T wave - Ventricular repolarization

  9. The PR Interval Atrial depolarization + delay in AV junction (AV node/Bundle of His) (delay allows time for the atria to contract before the ventricles contract)

  10. Atriumların kasılmasıyla oluşan dalga…P dalgası • Ventriküllerin kasılmasıyla oluşan dalga…QRS kompleksi • Ventriküllerin repolarize olmasıyla oluşan dalga…T dalgası • Uyarının sağ atriumdan çıkıp, a-v düğümden iletilmesi için geçen zaman……..P-R aralığı

  11. The ECG Paper • Horizontally • One small box - 0.04 s • One large box - 0.20 s • Vertically • One large box - 0.5 mV

  12. The ECG Paper (cont) 3 sec 3 sec • Every 3 seconds (15 large boxes) is marked by a vertical line. • This helps when calculating the heart rate.

  13. YATAY EKSEN: ZAMAN / DİKEY EKSEN: VOLTAJ • KÜÇÜK KARE = 0.04 sn / BÜYÜK KARE = 0.20 sn (25 mm /sn ) • 10 mm = 1 Mv • İki ince yatay çizgi arası 1 mm, kalın yatay çizgi arası 5 mm

  14. Rhythm Analysis • Step 1: Calculate rate. • Step 2: Determine regularity. • Step 3: Assess the P waves. • Step 4: Determine PR interval. • Step 5: Determine QRS duration.

  15. Step 1: Calculate Rate 3 sec 3 sec • Option 1 • Count the # of R waves in a 6 second rhythm strip, then multiply by 10. • Reminder: all rhythm strips in the Modules are 6 seconds in length. Interpretation? 9 x 10 = 90 bpm

  16. Step 1: Calculate Rate • Option 2 • In routine electrocardiographic practice, the recording speed of the paper is 25 mm. per second. • 1 mm = 0.04 sn • 5 mm= 0.2 sn (1 large division between the heavy lines) • 1 sn=25 mm___1 minute=1500 mm. • Beat: RR interval • 1500/RR(mm)=heart rate Interpretation? • 1500 / 16 = 93

  17. Step 1: Calculate Rate • Option 3: • Find a R wave that lands on a bold line. • Count the # of large boxes to the next R wave. If the second R wave is 1 large box away the rate is 300, 2 boxes - 150, 3 boxes - 100, 4 boxes - 75, etc. (cont) R wave

  18. Step 1: Calculate Rate 300 150 100 75 60 50 • Option 3 (cont) • Memorize the sequence: 300 - 150 - 100 - 75 - 60 - 50 Interpretation? • Approx. 1 box less than 100 = 95 bpm

  19. Step 2: Determine regularity R R • Look at the R-R distances (using a caliper or markings on a pen or paper). • Regular (are they equidistant apart)? Occasionally irregular? Regularly irregular? Irregularly irregular? Interpretation? Regular

  20. Rhythm Summary • Rate 90-95 bpm • Regularity regular • P waves normal • PR interval 0.12 s • QRS duration 0.08 s Interpretation? Normal Sinus Rhythm

  21. NSR Parameters • Rate ......bpm • Regularity regular • P waves normal • PR interval 0.12 - 0.20 s • QRS duration 0.04 - 0.12 s Any deviation from above is sinus tachycardia, sinus bradycardia or an arrhythmia

  22. The SA Node can: fire too slow fire too fast Sinus Bradycardia Sinus Tachycardia SA Node Problems Sinus Tachycardia may be an appropriate response to stress.

  23. Atrial cells can: fire occasionally from a focus fire continuously due to a looping re-entrant circuit Premature Atrial Contractions (PACs) Atrial Flutter Atrial Cell Problems

  24. Atrial Cell Problems Atrial cells can also: • fire continuously from multiple foci or fire continuously due to multiple micro re-entrant “wavelets” • Atrial Fibrillation • Atrial Fibrillation

  25. The AV junction can: fire continuously due to a looping re-entrant circuit block impulses coming from the SA Node Paroxysmal Supraventricular Tachycardia AV Junctional Blocks AV Junctional Problems

  26. Ventricular cells can: fire occasionally from 1 or more foci fire continuously from multiple foci fire continuously due to a looping re-entrant circuit Premature Ventricular Contractions (PVCs) Ventricular Fibrillation Ventricular Tachycardia Ventricular Cell Problems

  27. Rate? 160 bpm • Regularity? regular • P waves? none • PR interval? none • QRS duration? wide (> 0.12 sec) Interpretation? Ventricular Tachycardia

  28. Rate? none • Regularity? irregularly irreg. • P waves? none • PR interval? none • QRS duration? wide, if recognizable Interpretation? Ventricular Fibrillation

  29. Step 3: Assess the P waves • Are there P waves? • Do the P waves all look alike? • Do the P waves occur at a regular rate? • Is there one P wave before each QRS? Interpretation? Normal P waves with 1 P wave for every QRS

  30. P wave • P duration is measured from the onset to the end of the p wave. • The maximal p duration is 0.10 second in normal children(2.5mm) • The mean p amplitude in lead II or any other lead is about 1,5 mmA with a maximum of 3 mm. • Tall waves are an indication of right atrial hypertrophy.

  31. Right atrial enlargement • Take a look at this ECG. What do you notice about the P waves? The P waves are tall, especially in leads II, III and avF. Ouch! They would hurt to sit on!!

  32. Right atrial enlargement • To diagnose RAE you can use the following criteria: • II P > 2.5 mm, or • V1 or V2 P > 1.5 mm > 1 ½ boxes (in height) Remember 1 small box in height = 1 mm > 2 ½ boxes (in height) A cause of RAE is RVH from pulmonary hypertension.

  33. Notched Negative deflection Left atrial enlargement • Take a look at this ECG. What do you notice about the P waves? The P waves in lead II are notched and in lead V1 they have a deep and wide negative component.

  34. Left atrial enlargement • To diagnose LAE you can use the following criteria: • II > 0.04 s (1 box) between notched peaks, or • V1 Neg. deflection > 1 box wide x 1 box deep Normal LAE A common cause of LAE is LVH from hypertension.

  35. Step 4: Determine PR interval • From the onset of the p wave to the begining of the QRS complex • It is the time required for atrial depolarization and the physiologic delay of the impulse in the AV node. • The normal PR interval varies with age and heart rate. • The older the person and the slower the heart rate,the longer is the PR interval.

  36. PR interval

  37. Step 4: Determine PR interval • Normal: 0.12 - 0.20 seconds. (3 - 5 boxes) Interpretation? 0.12 seconds

  38. Step 5: QRS duration • First negative wave: Q • Positive wave: R • Second negative wave: S • QRS Duration: the time required for ventricular depolarization is short in the young infant and increases with age.

  39. NORMAL QRS

  40. Abnormal QRS amplitude: • Large deflexions: • Ventricular hypertrophy • Ventricular conduction disturbances • Low voltage: • Myocarditis • Pericardial effusions • Chronic constrictive pericarditis • Hypotiroidism

  41. Step 5: QRS duration • Normal: 0.04 - 0.12 seconds. (1 - 3 boxes) Interpretation? 0.08 seconds

  42. Right ventricular hypertrophy • Take a look at this ECG. What do you notice about the axis and QRS complexes over the right ventricle (V1, V2)? There is right axis deviation (negative in I, positive in II) and there are tall R waves in V1, V2.

  43. Right ventricular hypertrophy • Compare the R waves in V1, V2 from a normal ECG and one from a person with RVH. • Notice the R wave is normally small in V1, V2 because the right ventricle does not have a lot of muscle mass. • But in the hypertrophied right ventricle the R wave is tall in V1, V2. Normal RVH

  44. Right ventricular hypertrophy • To diagnose RVH you can use the following criteria: • Right axis deviation, and • V1 R wave > 7mm tall

  45. Left ventricular hypertrophy • Take a look at this ECG. What do you notice about the axis and QRS complexes over the left ventricle (V5, V6) and right ventricle (V1, V2)? The deep S waves seen in the leads over the right ventricle are created because the heart is depolarizing left, superior and posterior (away from leads V1, V2). There is left axis deviation (positive in I, negative in II) and there are tall R waves in V5, V6 and deep S waves in V1, V2.

More Related