1 / 7

Plasma Application Modeling, POSTECH

Plasma Application Modeling, POSTECH. ODE Global Model. 2005.10. 4. G.J. Kim. Plasma Application Modeling, POSTECH. -----①. -----②. Plasma Application Modeling, POSTECH. Plasma Application Modeling, POSTECH. pi = 4.0*atan(1.0) N = 10000 t = 0.0 dt = 1e-7 Pn = 5.0 Tg = 300.0

ping
Télécharger la présentation

Plasma Application Modeling, POSTECH

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plasma Application Modeling, POSTECH ODE Global Model 2005.10. 4. G.J. Kim

  2. Plasma Application Modeling, POSTECH -----① -----②

  3. Plasma Application Modeling, POSTECH

  4. Plasma Application Modeling, POSTECH pi = 4.0*atan(1.0) N = 10000 t = 0.0 dt = 1e-7 Pn = 5.0 Tg = 300.0 ng = 3.25e19*Pn*297/Tg lamda = 1e18/ng alpha = 2e-16 R = 0.07 L = 0.02 hR = 0.80/sqrt(4.0+R/lamda) hL = 0.86/sqrt(3.0+0.5*L/lamda) ideff = 2.0*(R*hL+L*hR)/R*L Pabs0 = 50 Volume = pi*R*R*L e = 1.602e-19 Eiz = 15.6 Eex = 11.6 Eel = 4.085e-5 ne = 1e16 te = 0.1

  5. Plasma Application Modeling, POSTECH do 220 i=1,N write(2,*), t,ne,te print *,'p = ',rPabs(t) call ode(ne,te,dt) t = t+dt print *,'t = ',t,' ne =',ne,' te =',te 220 continue subroutine ode(ne,te,dt) real ne,te,dt real new_ne,new_te,ryp,new_yp real Pabs0,Volume,e,Eiz,Eex,Eel common /input2/ Pabs0,Volume,e,Eiz,Eex,Eel ryp = 3.0/2.0*e*te*ne new_ne = ne + dt*Dn(ne,te) new_yp = ryp + dt*Dte(ne,te) new_te = new_yp/3.0*2.0/new_ne/e ne = ne + 0.5*dt*(Dn(new_ne,new_te) + Dn(ne,te)) ryp = ryp + 0.5*dt*(Dte(new_ne,new_te) + Dte(ne,te)) te = ryp/3.0*2.0/ne/e end function Dn(ne,te) Dn = ne*ng*rKiz(te) - ne*rUb(te)*ideff - alpha*ne*ne return end function Dte(ne,te) Dte = rPabs(t)/Volume - ne*ng*e* & (rKiz(te)*Eiz+rKex(te)*Eex+rKel(te)*Eel) & - ne*rUb(te)*ideff*(7.2*e*te) & - alpha*3.0/2.0*e*te*ne*ne return end

  6. Plasma Application Modeling, POSTECH function rKiz(te) real te rKiz = 2.3e-14*te**0.68*exp(-15.76/te) return end function rKel(te) real te real tt tt = te*te if (te .gt. 4) then rKel=1e-13* (0.399*te-0.0186*tt+0.004672*tt*te-6.429e-6*tt*tt) else rKel=1e-13* (5.14e-3+5.51e-2*te+0.229*tt-.0642*tt*te+.006*tt*tt) endif end function rPabs(t) real t,Tp real Pabs0,Volume,e,Eiz,Eex,Eel common /input2/ Pabs0,Volume,e,Eiz,Eex,Eel if(t .lt. 1e-4) then rPabs = Pabs0 else rPabs = 0 endif C Tp = 1e-2 C pi = 4.0*atan(1.0) C rPabs = 2.0*Pabs0*sin(2.0*pi/Tp*t)*sin(2.0*pi/Tp*t) C Tp = 100e-6 C ifl = t/Tp C if( t-ifl*Tp .gt. 0.2*Tp) then C rPabs = 0.0 C else C rPabs = Pabs0/0.2 C endif C return end function rKex(te) real te rKex = 0.371e-13*exp(-15.06/te)+ (0.06271e-13*exp(-14.27/te)*14.3 + 0.0352e-13*exp(-15.07/te)*14.15+0.009237e-13* exp(-15.66/te)*14.1 + 0.002501e-13*exp(-15.92/te)*14.3)/11.6 return end

  7. Plasma Application Modeling, POSTECH

More Related