1 / 57

Probing Inflation with CMB Polarization Measurements – QUIET, POLARBEAR and beyond

Probing Inflation with CMB Polarization Measurements – QUIET, POLARBEAR and beyond . Masashi Hazumi KEK CMB Group masashi.hazumi@kek.jp. Outline. 1. Science of CMB polarization 2. Summary of projects 3. QUIET and POLARBEAR 4. Future small satellite LiteBIRD. Disclaimer:

rafiki
Télécharger la présentation

Probing Inflation with CMB Polarization Measurements – QUIET, POLARBEAR and beyond

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Probing Inflation with CMB Polarization Measurements – QUIET, POLARBEAR and beyond Masashi Hazumi KEK CMB Group masashi.hazumi@kek.jp COSMO/CosPA 2010 Masashi Hazumi (KEK)

  2. Outline 1. Science of CMB polarization 2. Summary of projects 3. QUIET and POLARBEAR 4. Future small satellite LiteBIRD Disclaimer: Not a comprehensive review of ongoing/future projects. Focus is on the projectsJapanese CMB groups are involved in. COSMO/CosPA 2010 Masashi Hazumi (KEK)

  3. 1. Science of CMB Polarization • The best way to discover primordial gravitational wave (PGW) predicted in cosmic inflation CMB polarization map “a fingerprint” of inflation time Inflation Recombination COSMO/CosPA 2010 Masashi Hazumi (KEK)

  4. No PGW, E-mode only E-mode COSMO/CosPA 2010 Masashi Hazumi (KEK)

  5. With PGW, B-mode and E-mode B-mode: Smoking gun signal of PGW B-mode E-mode COSMO/CosPA 2010 Masashi Hazumi (KEK)

  6. Comparison with laser interferometer- my personal comment • CMB polarization is much more sensitive. • Discovery (on ground or in space) of PGW from CMB polarization will give a specific target for future gravitational wave detection experiments. a very strong science case can be made. COSMO/CosPA 2010 Masashi Hazumi (KEK)

  7. Inflation potential and T/Sratio B-mode power  r (tensor to scalar ratio) In case ofsingle-field slow-roll inflation (= the first thing we should experimentally test) Inflation potential also proportional to r V1/4 = 1.06  1016  (r/0.01)1/4 GeV Unique probe of GUT scale physics ! COSMO/CosPA 2010 Masashi Hazumi (KEK)

  8. Sensitivity of r~0.01 well motivated Current limit preferred phenomenologically, COSMO/CosPA 2010 Masashi Hazumi (KEK) Pagano-Cooray-Melchiorri-Kamionkowski 2007

  9. W. Hu et al. astro-ph/0210096 CMB Power spectra Ground-based Space/Balloon TT ~2deg. Reionization bump O(1)nK precision required for r=0.01 COSMO/CosPA 2010 Masashi Hazumi (KEK)

  10. Experimental results at present E mode B mode (U.L. 95%CL) Direct bound r < 0.7 (BICEP) Cf. WMAP(TT,TE,EE)+ACT+BAO+H0  r < 0.19 (95%CL) Expectation: Direct bound will supersede it in a few years. Or we will discover r  0 ! COSMO/CosPA 2010 Masashi Hazumi (KEK)

  11. Scientific Shopping List • Primordial gravitational wave (low-l B mode) • inflation model selection • Tests of quantum gravity, even string theories ! • Lensing(high-l)B-mode precision measurements • neutrino mass • (early) dark energy • Beyond the Standard Model • parity violation in gravity (non-zero CEB etc.) • Cosmic reionization science (low l) • Foreground science Cosmology and Fundamental physics Astronomy Rich and important science from CMB polarization COSMO/CosPA 2010 Masashi Hazumi (KEK)

  12. 2. Summary of projects COSMO/CosPA 2010 Masashi Hazumi (KEK)

  13. Target sensitivity • Ongoing: r ~ 0.1 • Next-round: r ~ 0.01 • Future: r ~ 0.001 (incl. Planck) r: Tensor-to-Scalar ratio Ground-based experiments try to achieve this as early as possible COSMO/CosPA 2010 Masashi Hazumi (KEK)

  14. Ground-based observationsof CMB polarization • Cons • Limited sky coverage • Atmosphere windows: 40,90,150,220 GHz • Pros • Magic patches (foreground “free” regions) • “Easy” access to hardware • Cost • Cutting-edge technologies • Polarization-sensitive detector arrays COSMO/CosPA 2010 Masashi Hazumi (KEK)

  15. Ground-based telescopes POLARBEAR (2011-) QUIET (2008-) You are here. Chajnantor, Atacama Chille (2010-) (2011-) チリ Not shown here are ABS, ACTPol, (Atacama) Polar, SPTPol (South Pole) South Pole Image: S. Richter COSMO/CosPA 2010 Masashi Hazumi (KEK)

  16. Balloon-borne telescopes BOOMERANG (1998、2003) MAXIMA (1995、1999) Archeops (1999-2002) Temperature MAXIPOL (2002、2003) Polarization SPIDER (2011, 2012) EBEX (2009-2011) PIPER(2013-) COSMO/CosPA 2010 Masashi Hazumi (KEK)

  17. Comparison ... • Enough to say for now that all the projects targeting r ~ 0.01 in 2~5 years • Recent technological development on polarization-sensitive detector arrays quite impressive, good reason for optimism • We will see  COSMO/CosPA 2010 Masashi Hazumi (KEK)

  18. 3. QUIET and POLARBEAR COSMO/CosPA 2010 Masashi Hazumi (KEK)

  19. QUIET Collaboration Manchester Oxford Chicago (KICP) Fermilab Oslo MPI-Bonn Michigan Stanford (KIPAC) KEK Caltech JPL Columbia Princeton Miami Observational Site Chajnantor Plateau, Chile 5 countries, 14 institutes, ~35 scientists COSMO/CosPA 2010 Masashi Hazumi (KEK)

  20. QUIET Overview • Unique MMIC (HEMT on chip) technology • The most sensitive coherent receiver array every built • 40GHz and 90GHz • Two steps of QUIET • phase I : ongoing, proof of technology • phase II: larger array (x ~16), r ~ 0.01 Chajnantor, 5080m Atacama, Chile COSMO/CosPA 2010 Masashi Hazumi (KEK)

  21. QUIET Overview We are here Timeline Chajnantor, 5080m Atacama, Chile Calibration done Data selection done Null tests done Systematic error under control Results will come soon ! (See Yuji Chinone’s slides on Sep.27) COSMO/CosPA 2010 Masashi Hazumi (KEK)

  22. QUIET Overview CMB 1.4m primary mirror Cross Mizuguch-Dragone Telescope Angular resolution: 27/12 arcmin for 40/90 GHz (FWHM) sufficient for l~100 peak Chajnantor, 5080m Atacama, Chile CMB Receiver system COSMO/CosPA 2010 Masashi Hazumi (KEK)

  23. QUIETreceiver system Focal Plane ~40cm COSMO/CosPA 2010 Masashi Hazumi (KEK)

  24. QUIET focal plane W band (90GHz) 90 detectors NEQ ~ 60mKs Q band (40GHz) 19 detectors NEQ ~ 70mKs Q-band obs. 19 detectors ~35cm COSMO/CosPA 2010 Masashi Hazumi (KEK)

  25. Cutting-edge technology: MMIC (developed by JPL) QUIET 3cm x 3cm CAPMAP ~30cm • Smaller detector • more detectors in the focal plane • smaller statistical error Another example of cutting-edge technologies (antenna-coupled TES) will be seen later in this talk. JPL COSMO/CosPA 2010 Masashi Hazumi (KEK)

  26. L=EX+iEY R=EX-iEY W-band module HEMT Amp. What is inside MMIC ? Phase switch 4kHz +1 1 180 Coupler Det. Diode -Q |LR|2+Q 90 Coupler |LiR|2+U -U COSMO/CosPA 2010 Masashi Hazumi (KEK) ~3cm

  27. Observation with QUIET ~3% of the sky observing every day COSMO/CosPA 2010 Masashi Hazumi (KEK)

  28. Scan strategy COSMO/CosPA 2010 Masashi Hazumi (KEK)

  29. COSMO/CosPA 2010 Masashi Hazumi (KEK)

  30. Glance at data (galactic patch) Stokes U Stokes Q QUIET Preliminary -150μK +150μK WMAP COSMO/CosPA 2010 Masashi Hazumi (KEK) +150μK -150μK

  31. QUIET Polarization Calibration ~4min to scan • TauA (Crab nebula) as the best polarized source (brightest and angle well known) TauA (Crab nebula) Q U Q Deck Angle: θ Δresponse<7% Δangle<2° Tpol~5mK Angle~150° (equatorial) U θ

  32. Expected Result (Monte Carlo simulation) E-mode B-mode 95% Confidence Upper limit • E-mode: detect 1st and 2nd peaks. • B-mode: Q-band close to the world best, and W-band will be the world best! Q-band Q-band W-band r=0.2

  33. QUIET Phase-II Expectation B-mode 95% Confidence upper limits • Scale up the number of polarimeters by factor 16 from Phase-I • Measure tensor-to-scalar ratio, r~0.01 level, and detect lensing Phase-I ~1/16 Phase-II multipole, ell

  34. POLARBEAR collaboration University of California at Berkeley Kam Arnold Daniel Flannigan Wlliam Holzapfel Jacob Howard Zigmund Kermish Adrian Lee, P.I. Marius Lungu Xiaofan Meng Mike Myers Roger O'Brient Erin Quealy Christian Reichardt Paul Richards Chase Shimmin Bryan Steinbach Aritoki Suzuki Oliver Zahn Lawrence Berkeley National Lab Julian Borrill Christopher Cantalupo Theodore Kisner Eric Linder Helmuth Spieler University of Colorado at Boulder Aubra Anthony Nils Halverson Laboratoire Astroparticule & Cosmologie Josquin Errard Radek Stompor KEK Masashi Hazumi Tomo Matsumura Haruki Nishino Akie Shimizu Takayuki Tomaru McGill University Peter Hyland Matt Dobbs Cardiff University Peter Ade Carole Tucker University of California at San Diego David Boettger Brian Keating George Fuller Nathan Miller Hans Paar Ian Schanning Meir Shimon Imperial College Andrew Jaffe Daniel O’Dea COSMO/CosPA 2010 Masashi Hazumi (KEK)

  35. POLARBEAR I: Overview Primary mirror Guard ring Ground shield Secondary mirror Cryogenic receiver Huan Tran Telescope COSMO/CosPA 2010 Masashi Hazumi (KEK)

  36. Receiver System COSMO/CosPA 2010 Masashi Hazumi (KEK)

  37. Focal plane TES Bolometer Filter 8 cm Antenna Lenslet 3.5” COSMO/CosPA 2010 Masashi Hazumi (KEK)

  38. Beam map (Jupiter) Test at the CARMA site (CA) Apr.-July. COSMO/CosPA 2010 Masashi Hazumi (KEK)

  39. TauA Consistent with expectations Test at the CARMA site (CA) Apr.-July. COSMO/CosPA 2010 Masashi Hazumi (KEK)

  40. Inflationary gravitational waves POLARBEAR-I Expected Sensitivity E-modes B-mode Grav. Lensing r = 0.1 r = 0.025  2 s detection of r = 0.025 including foreground subtraction

  41. Beam effect Suppression Differential gain Beam constrained 10-3 lensing Diff Ellipticity Suppression With sky rot Suppression w/ stepped HWP Diff Rotation Diff Beam Width small beams => Peak in leakage at high-l Diff Pointing COSMO/CosPA 2010 Masashi Hazumi (KEK)

  42. POLARBEAR-II POLARBEAR-I Team plus: N. Kimura, J. Suzuki, T. Suzuki (KEK), S. Takada (Tsukuba Univ.) • Next Generation Receiver for POLARBEAR • KEK-led effort • Goals • Improve limit on r • Reduce upper limit on sum of neutrino masses • Test-bed for LiteBIRD technology • Basis of future multi-telescope POLARBEAR • 2colors: 150GHz and 90GHz  Overlap with QUIET COSMO/CosPA 2010 Masashi Hazumi (KEK)

  43. ~40 cm ~6000 TES bolometers Deployment in 2013 PB-II: Focal plane detector number ~ 3x PB-I

  44. Synergy of QUIET and POLARBEAR Foreground removal with a combined analysis will be the most powerful way QUIET POLARBEAR Dust Synchrotron QUIET and POLARBEAR will co-observe the same patches of the sky Intensity Frequency COSMO/CosPA 2010 Masashi Hazumi (KEK)

  45. 4. Future small satellite LiteBIRD COSMO/CosPA 2010 Masashi Hazumi (KEK)

  46. CMB satellite COBE (1989 -1993) WMAP (2001-) Planck (2009-) Temperature is the main target Polarization is the main target EPIC(US):Medium B-Pol(Europe):Small LiteBIRD (Japan/US):Small (~2020-) COSMO/CosPA 2010 Masashi Hazumi (KEK)

  47. LiteBIRDOverviewLite (light) Satellite for the studies of B-mode polarization andInflation from cosmic background Radiation Detection One of small satellite working groups approved by JAXA Formed in Sep. 2008 COSMO/CosPA 2010 Masashi Hazumi (KEK)

  48. LiteBIRD Working Group • Y. Sato, K. Shinozaki, H. Sugita (ARD/JAXA) • H. Fuke, H. Matsuhara, K. Mitsuda, T. Yoshida (ISAS/JAXA) • K. Ishidoshiro, N. Katayama, M. Kimura, M. Nagai, R. Nagata, N. Sato, K. Sumisawa, T. Suzuki, O. Tajima, T. Tomaru, M. Hazumi [PI], M. Hasegawa. T. Higuchi, T. Matsumura, H. Nishino, M. Yoshida (KEK) • I. Ohta (Kinki U.) • Y. Uzawa, Y. Sekimoto, T. Noguchi (NAOJ) • J. Borrill (LBNL) • H. Ishino, A. Kibayashi, K. Hattori, S. Mima, T. Misawa (Okayama U.) • T. Ohtani (Riken) • E. Yaginuma (SOKENDAI) • Y. Chinone, M. Hattori (Tohoku U.) • T. Takada (U. Tsukuba) • A. Ghribi, W. L. Holzapfel, B. R. Johnson, A. T. Lee, P. L. Richards, H. T. Tran, A. Suzuki (UC Berkeley) • E. Komatsu (UT Austin) Consultants • H. Kodama (KEK), T. Nakagawa (JAXA), Y. Kawabe (NAOJ) Some are members of: ALMA APEX BICEP EBEX Planck POLARBEAR QUIET SPT WMAP Cryogenic expertise from X-ray group (DIOS) and IR group (SPICA) “Technology alliance” COSMO/CosPA 2010 Masashi Hazumi (KEK) CMBワークショップ             国立天文台2010年6月7、8、9日

  49. Basic Concept A fast-track cost-effective solution Small satellite (LiteBIRD) low l high l Ground-based superconducting CMB cameras, where you can use cutting-edge technologies COSMO/CosPA 2010 Masashi Hazumi (KEK)

  50. Spin axis Bore sight Secondary mirror half-wave plate (option) Primary mirror Focal plane w/ antenna-coupled multi-chroic TES COSMO/CosPA 2010 Masashi Hazumi (KEK)

More Related