1 / 40

Wonders of the Universe and the Ultimate Theory Quest

Wonders of the Universe and the Ultimate Theory Quest. Hideo Kodama Cosmophysics Group, Theory Center, KEK, Japan @ KEK 意見交換会 9 September 2011 「 機構 における宇宙観測(コスミック・フロンティア) の推進 について」. Wonders of the Universe in the Prephysics Era.

ramona
Télécharger la présentation

Wonders of the Universe and the Ultimate Theory Quest

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wonders of the Universe and the Ultimate TheoryQuest Hideo Kodama Cosmophysics Group, Theory Center, KEK, Japan @ KEK 意見交換会 9 September 2011 「機構における宇宙観測(コスミック・フロンティア)の推進 について」

  2. Wonders of the Universe in the Prephysics Era Motions of the Sun and planets were the most mysterious and important phenomena in the Universe!! Description became more and more complicated !!! KlaudiosPtolemaios • 『アルマゲスト』(最大の書)MegaleSyntaxistesAstronomias』(天文学大全)

  3. Newtonian Physics The Ultimate Theory in the 17th Cenctury Idealisation& Deep insight Ground-based Experiments Galileo Galilei The Law of Innertia Newtonian Mechanics & Law of Gravity Cosmic Observations Johannes Kepler Three Laws for Planetary Motion Precise Cosmology Predicted the Recurrence of the Halley Comet in 1757 ( 76 yr later)

  4. 500 years later ….

  5. “The Great Book” in the 20th century ???

  6. Standard Model and Beyond- ground-based physics - • SM is established for physics below 100GeV, but … • Incomplete gauge unification • Mysterious hypercharge structure • Strong CP problem • Mysterious generation repetition • Mysterious mass spectrum • The origin of neutrino masses and the CKM matrix • No dark matter candidate • No quantum theory of gravity

  7. GUT and String Theory- Idealisation and Deep Insight - • GUT + PQ-symmetry+SUSY may resolve many of the mysteries, but … • does not explain the generation repetition, • does not explain the origin of G and representations, • does not provide a quantum theory of gravity. • Superstring theory/M-theory may resolve all the problems and might be the ultimate theory of nature, but … • is still incomplete. • is higher dimensional, and its relation to our 4D universe is yet to be clarified. • Characteristic energy scales of these theories are E &1013TeV. Unreachable Energy Frontier for Ground-based Experiments!!

  8. Cosmic Jets Cosmic Rays Wonders of the Universe left to the 21th Century インフレーション 暗黒時代 現在の宇宙の加速膨張 熱いビッグバン宇宙 Creation of the Universe Dark Energy

  9. Cosmophysics Frontier • Energy frontier • Ultra-high energy cosmic ray: E> 109TeV (Ecm >103TeV) • Inflation: H ¼ E2/Mpl»1010TeV , E »1013TeV • Luminosity frontier • Cosmic jet (GRB): Number flux 1035cm-2s-1 (100GeV, diameter»104 km) cf. Belle 2£ 1034cm-2 s-1 (3.5+8GEV) LHC 1034 cm-2 s-1 (7TeV)

  10. Accuracy frontier (Experimental) • CMB measurements: dT/T »10-7 (Planck) • GW laser interferometers : h » 10-22 (LIGO) Cf. WMAP achievements •  mº < 0.44 eV (95% CL) [WMAP+LRG PS + H0] • Neff = 3.46 – 5.20 (68% CL) [WMAP + BAO + H0] • Primordial He: Yp=0.251 – 0.401 (95%CL) [WMAP] • Parity violation: Da = -1.1°+/- 1.3°+/- 1.5°(68%CL) [WMAP] • Constraint on QCD axion parameters

  11. UTQuest by Inflation Probe

  12. Cosmic expansion velocity Inflation Hot Big-Bang Universe Cosmic time Cosmological Inflation • Origin of Big-bang • Flatness problem • Horizon problem • Monopole problem • Origin of cosmic structures Accelerated expansion in the early univese Resolves Inflaton=high scalefield(s) with repulsive gravity The Ultimate Theory

  13. Inflationary Universe Model

  14. How to probe inflation Recombination Reheating Present Hot Big-Bang U. • During inflation • Quantum fluctuations of the inflaton and the metric are frozen on superhorizon scales. • After inflation • Inflaton fluctuations ) Density fluctuations )CMB anisotropy (T/E-modes) • Primordial GWs ) CMB anisotropy (T/E/B-modes) Length B-mode Quantum Fluctuations timet

  15. Observational Evidences WMAP 7yr data: ns= 0.963+/- 0.014 Flatness of the Universe Scale-invariant spectrum for curvature perturbations

  16. Zoo of Influms Small field models Large field models G-inflation Single inflaton k-inflation Potential-Dominated Chaotic type Hill top type Thermal N-flation Sugra Higgs Natural Linear axion Power-law DBI D-brane Monodromy Multipleinflaton Race-track Sugraaxion Vector/anisotropic Curvaton type Hybrid type

  17. Cosmic fluctuations bring us rich information on inflation • Scalar Perturbations ✓ Power Spectrum ) the shape and slope of the inflation potential ○ Adiabaticity)the number of inflaton fields/ light moduli , the inflation scale ☆Non-gaussianity)the type of inflaton ☆ Statistical anisotropy )anisotropic inflation • Tensor perturbations = gravitational waves ☆ Amplitude) the energy scale of inflation ☆GWPolarisation) CP violation in the gravity sector

  18. Primordial GWs as a robust probe Tensor-Scalar Ratio Primordial GWs are detectable only for high scale inflations. Lyth Bound Primordial GWs are detectable only for large field inflations .

  19. new influm Chaotic influm Small field models require fine-tuning of the initial condition Large field models are more natural !! Race-track model: a KKLT-type string moduli inflation model

  20. Current limit is still large Current limit: r<0.25 (95%CL) [ACT] Planck accurary: r<0.07

  21. r = 2£10-3 is critical Small field models Large field models G-inflation Single inflaton k-inflation Potential-Dominated Chaotic type Hill top type Thermal N-flation Sugra Higgs Natural Linear axion Power-law DBI D-brane Monodromy Multipleinflaton Race-track Sugraaxion Vector/anisotropic Curvaton type Hybrid type

  22. CMB Polarisation By Scattering

  23. E-mode and B-mode Pure E-mode Pure B-mode b E cosb+ B sinb Lue, Wang, Kamionkowski 1999

  24. E-mode Seljak Scalar Perturbations only produce E-mode

  25. B-mode Tensor perturbations produce both E- and B- modes

  26. Direct measurements of BGW bring more information 黒柳幸子@SI2011

  27. Future GW telescopes can see the reheating processes 黒柳幸子@SI2011

  28. Summary

  29. Ground-based Experiments Ultimate Theory Gauge Principle Supersymmetry Idealisation& Deep insight 現在の宇宙  前景放射 CMB 最初の星 Cosmic Observations 宇宙の始まり CMB, GW Precise Cosmology インフレーション ダークエイジ ビッグバン 再結合 銀河形成 再電離 Inflation is an ultimate accelerator!! 宇宙年齢   10-36秒     38万年   1億年                    137億年

  30. Backup Slides

  31. Effective neutrino number

  32. Primordial Helium Abundance

  33. Observational Constraints

  34. Constraints Summary Recent CMB observations support predictions of the inflationary universe scenario on LSS of the Universe: Can we construct an inflation model explaining these observational features in the framework of unified theory? • Flatness: |k|<0.01 • Homogeneity • Scalar perturbations • Amplitude • Spectral index: ns¼ 0.96 • Adiabaticity during the period teq < t < trec • Good gaussianity (Cf. CMB anomalies, cold spots, supervoid, …) • Tensor/scalar ratio: r=h2/R2 <0.3. • Reheating • Baryon asymmetry Thermal leptogenesis ) Tr> O(109) GeV [Buchmuller et al 2005] • Gravitino problem Tr < 108 GeV for m3/2>10keV [Kawasaki, Moroi 1995; Kawasaki, Takahashi, Yanagida 2006]

  35. Flatness -0.0175 < K<0.0085 (95%CL: WMAP5yr+BAO+SN) インフレーションが始まる前の空間曲率をki,対応するスケール因子をai,インフレーション終了後(再加熱後)のスケール因子をafとおくと, およびaeq' 2.5£ 10-5より, (Hf =2£ 1014GeV ,Tf' 1016GeV). よって,

  36. Horizon Problem 現在のHubbleホライズンサイズがインフレーションの途中でHubbleホライズンサイズ以下の領域になるためには, これは と同等.よって,

  37. Fluctuations • スカラゆらぎ(曲率ゆらぎ)の振幅: » 5£ 10-5. より正確には [WMAP 5yr] • スペクトル指数: ns = 0.960+0.014-0.013 (95%CL) [WMAP 5yr+BAO+SN] • テンソル/スカラ比: r:=¢h2/¢R2 <0.20 (95%CL) [WMAP5yr + BAO + SN] • 非断熱性: dT vs. d½DM • < 8.6% : axion-type DM • < 2.0% : curvaton-type DM • 非ガウス性:

  38. スペクトルの統計的非等方性 • WMAP constraint gs < 0.3 [Pullen, Kamionkowski 2007] • Planck sensitivity g>0.025 (400/lmax)1.27 [Groeneboomn, Eriksen 2008]

  39. Reheating • バリオン非対称性:nB/ng =(6.10+/- 0.21)£ 10-10 (WMAP3yr) Cf. Thermal leptogenesis)Tr> 3x109GeV [Buchmuller W, Di Bari P, Plumacher M (2005) Ann. Phys. 315:305] • Gravitino問題 [Kawasaki M, Takahashi F, Yanagida 2006;Kawasaki M, Moroi T 1995] • m3/2=100 GeV – 10 TeV (unstable): Thermal production )Tr<106-8GeV (BBN constraint) • 10 keV< m3/2<O(10)GeV (stable, LSP): Tr<107GeV(m3/2/1GeV) (M constraint)

More Related