480 likes | 775 Vues
COMP211 Computer Logic Design. Lecture 6. Verilog HDL – Sequential Logic. Prof. Taeweon Suh Computer Science Education Korea University. Sequential Logic. Verilog provides certain syntax, which turns into sequential circuits
E N D
COMP211 Computer Logic Design Lecture 6. Verilog HDL – Sequential Logic Prof. Taeweon Suh Computer Science Education Korea University
Sequential Logic • Verilog provides certain syntax, which turns into sequential circuits • In always statements, signals keep their old value until an event in the sensitivity list takes place • Statement inside always is executed only when the event specified in the sensitivity list occurs • Note that always statement could generate combinational logic, depending on your description always @ (sensitivity list) begin statement; statement; … end
D Flip-Flop • As studied, flip-flop samples input at the edge of the clock • always @(posedge clk) samples the input at the rising edge of the clock (clk) • always @(negedge clk) samples the input at the falling edge of the clock (clk) • Any output assigned in an always statement must be declared reg • Note that a variable declared reg is not necessarily to be a registered output • We’ll see it later… • <= or = can be used inside the always statement • <= is called nonblocking assignment • = is called blocking assignment • We are going to discuss about this later module flipflop(input clk, input [3:0] d, output reg [3:0] q); always @ (posedge clk) begin q <= d; // pronounced “q gets d” end endmodule
D Flip-Flop Simulation testbench module Dflipflop(input clk, input [3:0] d, output reg [3:0] q); always @(posedge clk) begin q <= d; end endmodule `timescale 1ns / 1ns module Dflipflop_tb(); reg clock; reg [3:0] data; wire [3:0] q; parameter clk_period = 10; Dflipflop dut(.clk(clock), .d(data), .q (q) ); always begin clock = 1; forever #(clk_period/2) clock = ~clock; end initial begin data = 4'h0; #3; data = 4'h3; #(clk_period*2); data = 4'h5; #(clk_period*3); data = 4'hA; #(clk_period*3); data = 4'hC; #(clk_period*2); end endmodule
D Flip-Flop with Sync and Async Reset DFF with Synchronous Reset DFF with Asynchronous Reset module ff_syncR(input clk, input reset, input [3:0] d, output reg [3:0] q); // synchronous reset // sensitively list has only clk always @(posedge clk) begin if (reset) q <= 4'b0; else q <= d; end endmodule module ff_asyncR(input clk, input reset, input [3:0] d, output reg [3:0] q); // asynchronous reset // sensitivity list has both clk and reset always @ (posedge clk, posedge reset) begin if (reset) q <= 4'b0; else q <= d; end endmodule
D Flip-Flop with Sync Reset `timescale 1ns / 1ns module ff_syncR_tb( ); reg clk; reg reset; reg [3:0] d; wire [3:0] q; parameter clk_period = 10; ff_syncR dut(clk, reset, d, q); always begin clk = 1; forever #(clk_period/2) clk = ~clk; end initial begin reset = 1; #3; reset = 1; #(clk_period*2); reset = 0; #(clk_period*3); reset = 1; #(clk_period*2); reset = 0; #(clk_period*3); end initial begin d = 4'h0; #3; d = 4'h3; #(clk_period*2); d = 4'h5; #(clk_period*3); d = 4'hA; #(clk_period*3); d = 4'hC; #(clk_period*2); end endmodule module ff_syncR(input clk, input reset, input [3:0] d, output reg [3:0] q); // synchronous reset always @(posedge clk) begin if (reset) q <= 4'b0; else q <= d; end endmodule
D Flip-Flop with Enable `timescale 1ns / 1ns module ff_en_tb(); reg clk; reg reset; reg en; reg [3:0] d; wire [3:0] q; parameter clk_period = 10; ff_en dut(clk, reset, en, d, q); always begin clk = 1; forever #(clk_period/2) clk = ~clk; end initial begin reset = 1; #3; reset = 1; #(clk_period*2); reset = 0; end initial begin en = 1; #3; en = 1; #(clk_period*5); en = 0; #(clk_period); en = 1; end initial begin d = 4'h0; #3; d = 4'h3; #(clk_period*2); d = 4'h5; #(clk_period*3); d = 4'hA; #(clk_period*3); d = 4'hC; #(clk_period*2); end endmodule module ff_en(input clk, input reset, input en, input [3:0] d, output reg [3:0] q); // asynchronous reset and enable always @(posedge clk, posedge reset) begin if (reset) q <= 4'b0; else if (en) q <= d; end endmodule
D Latch • As studied, a D-latch is • transparent when the clock is high • opaque when the clock is low (retaining its old value) • Try to avoid using latches unless you have a good reason to use them because latches may transfer unwanted input to output like glitches • Instead, use flip-flops module latch(input clk, input [3:0] d, output reg [3:0] q); always @ (clk, d) begin if (clk) q <= d; end endmodule
D Latch Simulation `timescale 1ns / 1ns module latch_tb( ); reg clk; reg [3:0] d; wire [3:0] q; parameter clk_period = 10; latch latch_dut(clk, d, q); always begin clk = 1; forever #(clk_period/2) clk = ~clk; end initial begin d = 4'h0; #3; d = 4'h3; #(clk_period*2); d = 4'h4; #(clk_period/5); d = 4'h5; #(clk_period/5); d = 4'h6; #(clk_period/5); d = 4'h7; #(clk_period/5); d = 4'h8; #(clk_period/5); d = 4'h9; #(clk_period*3); d = 4'hA; #(clk_period*3); d = 4'hC; #(clk_period*2); end endmodule module latch(input clk, input [3:0] d, output reg [3:0] q); always @(clk, d) begin if (clk) q <= d; end endmodule
Useful Behavioral Statements • Keywords that must be inside always statements • if / else • case, casez • Again, variables assigned in an always statement must be declared as reg even if they’re not actually intended to be registers • In other words, all signals on the left side of <= and = inside always should be declared as reg
Combinational Logic using always • The always statement can also describe combinational logic (not generating flip-flops) // combinational logic using an always statement module gates(input [3:0] a, b, output reg [3:0] y1, y2, y3, y4, y5); always @ (*) // need begin/end because there is begin // more than one statement in always y1 = a & b; // AND y2 = a | b; // OR y3 = a ^ b; // XOR y4 = ~(a & b); // NAND y5 = ~(a | b); // NOR end endmodule This hardware could be described with assign statements using fewer lines of code, so it’s better to use assign statements in this case.
Combinational Logic using case What kind of circuit would it generate? module sevenseg(input [3:0] data, output reg [6:0] segments); always @(*) begin case (data) // abc_defg 0: segments = 7'b111_1110; 1: segments = 7'b011_0000; 2: segments = 7'b110_1101; 3: segments = 7'b111_1001; 4: segments = 7'b011_0011; 5: segments = 7'b101_1011; 6: segments = 7'b101_1111; 7: segments = 7'b111_0000; 8: segments = 7'b111_1111; 9: segments = 7'b111_1011; default: segments <= 7'b000_0000; // required endcase end endmodule
Combinational Logic using case • In order for a case statement to imply combinational logic, all possible input combinations must be described by the HDL • Remember to use a defaultstatement when necessary, that is, when all the possible combinations are not listed in the body of the case statement • Otherwise, what kind of circuit do you think the statement would generate?
Combinational Logic using casez • The casez statement is used to describe truth tables with don’t cares • ‘don’t cares’ are indicated with ?in the casez statement module priority_casez(input [3:0] a, output reg [3:0] y); always @(*) begin casez(a) 4'b1???: y = 4'b1000; // ? = don’t care 4'b01??: y = 4'b0100; 4'b001?: y = 4'b0010; 4'b0001: y = 4'b0001; default: y = 4'b0000; endcase end endmodule
Priority Circuit Simulation module priority_casez(input [3:0] a, output reg [3:0] y); always @(*) begin casez(a) 4'b1???: y = 4'b1000; 4'b01??: y = 4'b0100; 4'b001?: y = 4'b0010; 4'b0001: y = 4'b0001; default: y = 4'b0000; endcase end endmodule `timescale 1ns / 1ns module priority_casez_tb(); reg [3:0] a; wire [3:0] y; parameter clk_period = 10; priority_casez dut(a, y); initial begin a = 4'b0110; #(clk_period*2); a = 4'b1110; #(clk_period*2); a = 4'b0101; #(clk_period*2); a = 4'b0011; #(clk_period*2); a = 4'b0001; #(clk_period*2); a = 4'b0000; #(clk_period*2); end endmodule
Parameterized Modules • HDLs permit variable bit widths using parameterized modules • So far, all of our modules have had fixed-width inputs and outputs • Verilog allows a #(parameter …)statement to define parameters before the inputs and outputs module mux2 #(parameter width = 8) // name and default value (input [width-1:0] d0, d1, input s, output [width-1:0] y); assign y = s ? d1 : d0; endmodule Instance with 8-bit bus width (uses default): mux2 mux1(d0, d1, s, out); Instance with 12-bit bus width: mux2 #(12) lowmux(d0, d1, s, out);
Blocking and Nonblocking Statements • In the always statement, • = indicates blocking statement • <= indicates nonblocking statement • Blocking statementsare evaluated in the order in which they appear in the code • Like one would expect in a standard programming language such as C language • Nonblockingstatementsare evaluated concurrently • All of the statements are evaluated concurrently before any of the signals on the left hand sides are updated
Blocking vs Nonblocking Example • What kinds of circuit would be generated? module sync_nonblocking (input clk, input d, output reg q); reg n1; always @(posedge clk) begin n1 <= d; // nonblocking q <= n1; // nonblocking end endmodule module sync_blocking (input clk, input d, output reg q); reg n1; always @(posedge clk) begin n1 = d; // blocking q = n1; // blocking end endmodule
Blocking vs Nonblocking Example 1-bit full adder + + + + S = A B Cin Cout = AB + ACin + BCin Let P = A B Let G = AB S = P Cin = G + PCin Cout = AB + (A + B)Cin
Full Adder with Blocking Statements • Like a high-level language, the blocking statements are evaluated in the order they appear in the body of the module • Suppose that all the inputs and internal nodes are initially 0 • At some time later, a changes to 1 module fulladder(input a, b, cin, output reg s, cout); reg p, g; always @(*) begin p = a ^ b; // blocking g = a & b; // blocking s = p ^ cin; // blocking cout = g | (p & cin); // blocking end endmodule • p ← 1 ^ 0 = 1 • g ← 1 • 0 = 0 • s ← 1 ^ 0 = 1 • cout ← 0 + 1 • 0 = 0
Full Adder with Nonblocking Statements module fulladder(input a, b, cin, output reg s, cout); reg p, g; always @(*) begin p <= a ^ b; // nonblocking g <= a & b; // nonblocking s <= p ^ cin; // nonblocking cout <= g | (p & cin); // nonblocking end endmodule • Nonblocking statements are evaluated concurrently • Suppose that all the inputs and internal nodes are initially 0 • At some time later, a changes to 1 • p ← 1 ^ 0 = 1, g ← 1 • 0 = 0, s ← 0 ^ 0 = 0, cout ← 0 + 0 • 0 = 0 • p ← 1 ^ 0 = 1, g ← 1 • 0 = 0, s ← 1 ^ 0 = 1, cout ← 0 + 1 • 0 = 0 • It makes simulation slow though it synthesizes to the same hardware • Also kind of hard to figure out what the circuit is doing… This kinds of coding should be avoided
Blocking and Nonblocking Recap • Some statements implies (generates) completely different logic as shown in the flip-flop case • Some statements implies (generates) the same logic no matter which statement you use as we have seen in the full-adder case • But, it affects the simulation time • So, choose wisely which statement you have to use
Rules for Signal Assignment • Use always @(posedge clk) and nonblocking assignments to model synchronous sequential logic always @(posedge clk) q <= d; // nonblocking statement • Use continuous assignment statements to model simple combinational logic assign y = a & b; • Use always @(*) and blocking assignments to model more complicated combinational logicwhere the always statement is helpful • Do not make assignments to the same signal in more than one always statement or continuous assignment statement
FSM Revisit • Synchronous sequential circuit can be drawn like below • These are called FSMs • Super-important in digital circuit design and very straightforward to understand • FSM is composed of • State register • Combinational logic that • Computes the next state based on current state and input • Computes the outputs based on current state (and input)
Traffic Light Revisit • A simplified traffic light controller • Traffic sensors: TA, TB • Each sensor becomes TRUE if students are present • Each sensor becomes FALSE if the street is empty • Lights: LA, LB • Each light receives digital inputs specifying whether it should be green, yellow, or red
Moore FSM in Verilog // next state logic always @ (*) case (state) S0: if (~TA) nextstate <= S1; else nextstate <= S0; S1: nextstate <= S2; S2: if (~TB) nextstate <= S3; else nextstate <= S2; S3: nextstate <= S0; default: nextstate <= S0; endcase // output logic always @ (*) if (state == S0) begin LA = green; LB = red; end else if (state == S1) begin LA = yellow; LB = red; end else if (state == S2) begin LA = red; LB = green; end else begin LA = red; LB = yellow; end endmodule module moore_traffic_light (input clk, reset, TA, TB, output reg [1:0] LA, LB); reg [1:0] state, nextstate; parameter S0 = 2’b00; parameter S1 = 2’b01; parameter S2 = 2’b10; parameter S3 = 2’b11; parameter green = 2’b00; parameter yellow = 2’b01; parameter red = 2’b10; // state register always @ (posedge clk, posedge reset) if (reset) state <= S0; else state <= nextstate;
Testbench for Traffic Light FSM `timescale 1ns/1ps module moore_traffic_light_tb(); reg clk, reset; reg TA, TB; wire [1:0] LA, LB; parameter clk_period = 10; moore_traffic_light dut(.clk (clk), .reset (reset), .TA (TA), .TB (TB), .LA (LA), .LB (LB) ); initial begin reset = 1; #13 reset = 0; end always begin clk = 1; forever #(clk_period/2) clk = ~clk; end initial begin TA = 0; TB = 0; #3 TA = 0; TB = 0; #(clk_period) TA = 1; TB = 1; #(clk_period*5) TA = 0; TB = 1; #(clk_period*4) TA = 0; TB = 0; #(clk_period*4) TA = 1; TB = 0; end endmodule
Simulation with ModelSim • Useful tips in using ModelSim • To display state information as described in Verilog code • Format: radix define name { …. } • Example: radix define mystate {2’b00 “S0” , 2’b01 “S1” , 2’b10 “S2” , 2’b11 “S3”} • radix define mylight {2'b00 "green“ , 2'b01 "yellow“ , 2'b10 "red"} • Save the display information for the use in the future • File->Save Format, Then click on “OK” • By default, it will save the waveform format to “wave.do”
Snail FSM Revisit • There is a snail • The snail crawls down a paper tape with 1’s and 0’s on it • The snail smiles whenever the last four digits it has crawled over are 1101 1/0 Moore FSM: arcs indicate input 1 0/0 reset 1 1 0 1 S1 0 S0 0 S2 0 S3 0 S4 1 0 0 1 0 0 Mealy FSM: arcs indicate input/output 1/1 reset 1/0 0/0 S1 S0 S2 S3 0/0 1/0 0/0
Moore FSM in Verilog // Next State Logic always @(*) begin case (state) S0: if (bnum) #delay nextstate <= S1; else #delay nextstate <= S0; S1: if (bnum) #delay nextstate <= S2; else #delay nextstate <= S0; S2: if (bnum) #delay nextstate <= S2; else #delay nextstate <= S3; S3: if (bnum) #delay nextstate <= S4; else #delay nextstate <= S0; S4: if (bnum) #delay nextstate <= S2; else #delay nextstate <= S0; default: #delay nextstate <= S0; endcase end // Output Logic always @(*) begin if (state == S4) smile <= 1'b1 ; else smile <= 1'b0 ; end endmodule Moore FSM: arcs indicate input 1 reset 1 1 0 1 S1 0 S0 0 S2 0 S3 0 S4 1 0 0 1 0 0 module moore_snail(input clk, reset, bnum, output reg smile); reg [2:0] state, nextstate; parameter S0 = 3'b000; parameter S1 = 3'b001; parameter S2 = 3'b010; parameter S3 = 3'b011; parameter S4 = 3'b100; parameter delay = 1; // state register always @(posedge reset, posedge clk) begin if (reset) #delay state <= S0; else #delay state <= nextstate; end
Mealy FSM in Verilog // Next State and Output Logic always @(*) begin case (state) S0: begin #delay smile <= 1'b0; if (bnum) #delay nextstate <= S1; else #delay nextstate <= S0; end S1: begin #delay smile <= 1'b0; if (bnum) #delay nextstate <= S2; else #delay nextstate <= S0; end S2: begin #delay smile <= 1'b0; if (bnum) #delay nextstate <= S2; else #delay nextstate <= S3; end S3: begin if (bnum) #delay smile <= 1'b1; else #delay smile <= 1'b0; if (bnum) #delay nextstate <= S1; else #delay nextstate <= S0; end default: begin #delay smile <= 1'b0; #delay nextstate <= S0; end endcase end endmodule Mealy FSM: arcs indicate input/output 1/0 0/0 module mealy_snail(input clk, reset, bnum, output reg smile); reg [1:0] state, nextstate; parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10; parameter S3 = 2'b11; parameter delay = 1; // state register always @(posedge reset, posedge clk) begin if (reset) #delay state <= S0; else #delay state <= nextstate; end 1/1 reset 1/0 0/0 S1 S0 S2 S3 0/0 1/0 0/0
Testbench for Snail FSM `timescale 1ns/1ps module fsm_snail_tb( ); reg clk, reset, bnum; wire smile_moore; wire smile_mealy; parameter clk_period = 10; moore_snail moore_snail_uut (clk, reset, bnum, smile_moore); mealy_snail mealy_snail_uut (clk, reset, bnum, smile_mealy); initial begin reset = 1; #13 reset = 0; end always begin clk = 1; forever #(clk_period/2) clk = ~clk; end initial begin bnum = 0; #3; bnum = 0; #clk_period; bnum = 1; #clk_period; bnum = 0; #clk_period; bnum = 0; #clk_period; bnum = 0; #clk_period; bnum = 1; #clk_period; bnum = 1; #clk_period; bnum = 0; #clk_period; bnum = 1; #clk_period; // Smile bnum = 1; #clk_period; bnum = 0; #clk_period; bnum = 1; #clk_period; // Smile bnum = 0; end endmodule
Simulation with ModelSim • Use radices below for display purpose • radix define moore_state {3'b000 "S0” , 3'b001 "S1” , 3'b010 "S2” , 3'b011 "S3” , 3'b100 "S4"} • radix define mealy_state {2'b00 "S0” , 2'b01 "S1” , 2'b10 "S2” , 2'b11 "S3"}
Testbench and TestVector • Testbench • HDL code written to test another HDL module, the device under test (dut) (also called the unit under test (uut)) • Testbench contains statements to apply input to the DUT and ideally to check the correct outputs are produced • Testvectors • Inputs to DUT and desired output patterns from DUT • Types of testbenches • Simple testbench • Self-checking testbench • Self-checking testbench with testvectors
Simple Testbench Revisit `timescale 1ns/1ps module testbench1(); reg a, b, c; wire y; // instantiate device under test sillyfunction dut(a, b, c, y); // apply inputs one at a time initial begin a = 0; b = 0; c = 0; #10; c = 1; #10; b = 1; c = 0; #10; c = 1; #10; a = 1; b = 0; c = 0; #10; c = 1; #10; b = 1; c = 0; #10; c = 1; #10; end endmodule testbench module sillyfunction (input a, b, c, output y); assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c; endmodule testvectors
Self-checking Testbench Revisit module testbench2(); reg a, b, c; wire y; // instantiate device under test sillyfunction dut(a, b, c, y); // apply inputs one at a time // checking results initial begin a = 0; b = 0; c = 0; #10; if (y !== 1) $display("000 failed."); c = 1; #10; if (y !== 0) $display("001 failed."); b = 1; c = 0; #10; if (y !== 0) $display("010 failed."); c = 1; #10; if (y !== 0) $display("011 failed."); a = 1; b = 0; c = 0; #10; if (y !== 1) $display("100 failed."); c = 1; #10; if (y !== 1) $display("101 failed."); b = 1; c = 0; #10; if (y !== 0) $display("110 failed."); c = 1; #10; if (y !== 0) $display("111 failed."); end endmodule testvectors
Self-Checking Testbench with Testvectors • Writing code for each test vector is tedious, especially for modules that require a large number of vectors • A better approach is to place the test vectors in a separate file • Then, testbench reads the file, applies input to DUT and compares the DUT’s outputs with expected outputs • Generate clock for assigning inputs, reading outputs • Read testvectors file into array • Assign inputs and expected outputs to signals • Compare outputs to expected outputs and report errors if there is discrepancy
Testbench with Testvectors • Testbench clock is used to assign inputs (on the rising edge) and compare outputs with expected outputs (on the falling edge) • The testbench clock may also be used as the clock source for synchronous sequential circuits
Testvector File Example example.tv contains vectors of abc_yexpected 000_1 001_0 010_0 011_0 100_1 101_1 110_0 111_0 module sillyfunction(input a, b, c, output y); assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b & c; endmodule
Self-Checking Testbench with Testvectors module testbench3(); regclk, reset; reg a, b, c, yexpected; wire y; reg [31:0] vectornum, errors; reg [3:0] testvectors[10000:0]; // array of testvectors // instantiate device under test sillyfunctiondut(a, b, c, y); // generate clock always begin clk = 1; #5; clk = 0; #5; end • Generate clock for assigning inputs, reading outputs • Read testvectors file into array • Assign inputs and expected outputs to signals // at start of test, load vectors // and pulse reset initial begin $readmemb("example.tv", testvectors); vectornum = 0; errors = 0; reset = 1; #27; reset = 0; end // Note: $readmemh reads testvector files written in // hexadecimal // apply test vectors on rising edge of clk always @(posedge clk) begin #1; {a, b, c, yexpected} = testvectors[vectornum]; end
Self-Checking Testbench with Testvectors 4. Compare outputs to expected outputs and report errors if there is discrepancy // check results on falling edge of clk always @(negedge clk) begin if (~reset) begin // skip during reset if (y !== yexpected) begin $display("Error: inputs = %b“, {a, b, c}); $display(" outputs = %b (%b expected)“, y, yexpected); errors = errors + 1; end // increment array index and read next testvector vectornum = vectornum + 1; if (testvectors[vectornum] === 4'bx) begin $display("%d tests completed with %d errors“, vectornum, errors); $finish; end end endmodule // Note: “===“ and “!==“ can compare values that are x or z.
HDL Summary • HDLs are extremely important tools for modern digital designers • Once you have learned Verilog-HDL or VHDL, you will be able to design digital systems much faster than drawing schematics • Debug cycle is also often much faster because modifications require code changes instead of tedious schematic rewriting • However, the debug cycle can be much longer with HDLs if you don’t have a good idea of the hardware your code implies
HDL Summary • The most important thing to remember when you are writing HDL code is that you are describing real hardware! (not writing a software program) • The most common beginner’s mistake is to write HDL code without thinking about the hardware you intend to produce • If you don’t know what hardware your code is implying, you are almost certain not to get what you want • So, probably sketch a block diagram of your system • Identify which portions are combinational logic, sequential logic, FSMs and so on, so forth • Write HDL code for each portion and then merge together
N: 2N Decoder Example module decoder #(parameter N = 3) (input [N-1:0] a, output reg [2**N-1:0] y); always @(*) begin y = 0; y[a] = 1; end endmodule