340 likes | 462 Vues
This document presents a comprehensive analysis of spinless particle scattering in the center of mass frame, focusing on the interplay between poles and zeros in partial wave analysis (PWA). The work highlights Barrelet ambiguities and demonstrates how to find amplitudes via truncation techniques. It explores chiral symmetry implications and the π-ρ connection using Adler's zero. The findings are essential for understanding hadron states and refining scattering amplitudes, providing a clearer pathway for theoretical and experimental applications in particle physics.
E N D
Barrelet zeros PWA 2011 GWU May 2011
hadron states 1 M2 – s – iM x
variables: E = s , spinless particle scattering cm
Spin analysis M 1 q M 2 Spectroscopy: interplay ofpoles & zeros
pp pp t u r f 2 s r 3 u s t
2 f m p p m d A = m
Chiral symmetry 2 f m p p m d A = m Adler zero makes the - connection
how to find the amplitudes 2J Truncate j < 2J
F(s,z) exp (i) 2J amplitudes how to find the amplitudes Barreletambiguity
Barrelet ambiguity D cos S P
Barrelet ambiguity D D´ cos P´ S P S´
Barrelet zeros continuity
s (1+P) d / d W S = A P (z) n n n pN pN S - B P (z) = sin q n n 2 _ _ = | f + i g | n 2 2 s s = | f | + | g | d / d d / d W W representing experiment = - 2 Im (f * g) s s P d / d P d / d W W
s (1+P) d / d W pN pN 2 _ _ = | f + i g | F (s, w)
w Barrelet treatment q =p q = 0
s (1+P) d / d W w Barrelet treatment s (1-P) d / d W q =p q = 0
Barrelet treatment F(s,w)) exp(i 2J amplitudes
Barrelet treatment m J, J+1 2J amplitudes = cf. Omelaenko
w Barrelet treatment w 1 . q =p q = 0
w * 1/ Barrelet treatment w w 1 1 . q =p q = 0
ds/dW 1234 MeV p p p p + + - 0 p p p n 1449 MeV 1678 MeV - - p p p p 1900 MeV q q q
P 1234 MeV p p p p + + - 0 p p p n 1449 MeV 1678 MeV - - p p p p 1900 MeV q q q
w p p p p + + 1.45 b 2 2 2 1.1 1.1 c 2 a d 2 1.75 2 2 1.45 SAID EBAC Kamano
w p p p p + + b 2 2 1.1 c 1.1 2 a d 2 2 SAID EBAC Kamano
t s p p p p + + u - - p p p p
D (1232) D (1670) s D (1910) p p p p + + d a b c SAID EBAC
F(s,z) exp (i ) L max continuum ambiguity L
PWA 2011 GWU May 2011