1 / 17

Markus Rapp and Franz-Josef Lübken

Markus Rapp and Franz-Josef Lübken Leibniz-Institut für Atmosphärenphysik (IAP) an der Universität Rostock Kühlungsborn Stefanos Fasoulas Institut für Raumfahrtsysteme (IRS), Universität Stuttgart.

reina
Télécharger la présentation

Markus Rapp and Franz-Josef Lübken

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Markus Rapp and Franz-Josef Lübken Leibniz-Institut für Atmosphärenphysik (IAP) an der Universität Rostock Kühlungsborn Stefanos Fasoulas Institut für Raumfahrtsysteme (IRS), Universität Stuttgart WADIS-Wave propagationanddissipationin themiddleAtmosphere:Energybudget und distributionoftracegasesfundedby DLR- Space Agency: 2010 - 2013

  2. Motivation

  3. Residual Circulationbecauseofwave-meanflowinteraction: Small scaledynamics (WavesandTurbulence) affects global fields Sommer Winter Motivation Sommer Winter 100 km 50 km 0 km Model: Erich Becker, IAP

  4. Open issues

  5. Propagation issues Winter: Existingtechniquesfor wind measurements:Sommer: WADIS will use all ofthesemethodsatthe same time!

  6. Criteriaforinstabilities? Paradigm: A wave/flowturnsunstable • Staticinstability (heavy airabovelightair) • Dynamic instability (large wind shear) Characterizedbyverticaldistributionof T, u !!!

  7. Criteriaforinstabilities? Achatz, Adv. Space Res. 2007

  8. Influence on trace gas distributions Source: Photolysisof O2 in SR-Band (175-205nm) and SR-Continuum (137-175nm) Sink: 3-body recombination O+O+M -> O2 + M O+O2+M -> O3 + M

  9. Contributiontotheenergybudget Exothermalreactionsof O Dissipation of GW PhotolysisofO2 Mlynczak (1996)

  10. Aimsof WADIS • Measurement ofthepropagationanddissipationof GW in therange 0 – 100km • Quantifythecontributionofthesewavestotheenergybudget • First educatedguesses on horizontal structuresofturbulence • Quantifythecontributionof O totheenergybudget • (Determinethedeactivation rate of CO2*(15mm) + O bycomparisontosatellite IR-data)

  11. Experimental Concept

  12. General concept • 2 Campaigns: 1x winter (Jan./Feb. 2012), 1x spring transition (April/May 2013) • Per Campaign: 1 Salvoconsistingof ~10 meteorologicalrocketsforhighresolution wind measurementsand 1 instrumented rocket forthemeasurementofdensities, temperatures, turbulenceandatomicoxygen • Combine withuniquenewgroundbasedfacilities (DORIS & MAARSY) • Combine with SABER/TIMED overflight

  13. The WADIS payload • 14‘‘ payloadwithidenticalinstrumentation on front andreardecks • Je 1 x CONE, 1 x FIPEX und 1 x PHLUX + small additional instruments • Measurements on up- anddownleg (firstcrude horizontal information)

  14. Instrumentation

  15. CONE (COmbined sensor for Neutrals and Electrons) time constant ~ 1 - 8 ms altitude resolution  10 cm Precision  0.1 % Ie ~ local electron density ICONE ~ local neutral density

  16. FIPEX and PHLUX: Atomicoxygen FIPEX Based on electro- chemicalprocesses Fasoulas et al., 2010 PHLUX Based on catalytic Properties ofmaterials Herdrich et al., 2010

  17. Instrumentation to study GW@IAP & Collab. 100km MAARSY Resonance -Lidar Hfr: Turbulence, T Summer: PMSE; ~100% Meteor/MF-radar OH-airglow/NLC Winter: PMWE; >10% Rayleigh-Lidar Met-rockets Radar-gap Troposp. Radio-s. 100km

More Related