1 / 46

The Greedy Method

The Greedy Method. Outline. Introduction – Lee ’ s MST – Lee ’ s and mine Kruskal ’ s algorithm Prim ’ s algorithm Huffman Code – Cormen ’ s Knapsack Problem – Lee ’ s and Cormen ’ s Shortest Path Algorithms – Mine. The Greedy Method.

rendor
Télécharger la présentation

The Greedy Method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Greedy Method

  2. Outline • Introduction – Lee’s • MST – Lee’s and mine • Kruskal’s algorithm • Prim’s algorithm • Huffman Code – Cormen’s • Knapsack Problem – Lee’s and Cormen’s • Shortest Path Algorithms – Mine

  3. The Greedy Method • Suppose that a problem can be solved by a sequence of decisions. The greedy method has the property that each decision is locally optimal. These locally optimal solutions will finally add up to be a globally optimal solution. • Only a few optimization problems can be solved by the greedy method.

  4. The Greedy Method • E.g. Pick k numbers out of n numbers such that the sum of these k numbers is the largest. • Algorithm: FOR i = 1 to k pick out the largest number and delete this number from the input. ENDFOR

  5. The Greedy Method • E.g. Find a shortest path from v0 to v3. • The greedy method can solve this problem. • The shortest path: 1 + 2 + 4 = 7.

  6. The Greedy Method • E.g. Find a shortest path from v0 to v3 in the multi-stage graph. • Greedy method: v0v1,2v2,1v3 = 23 • Optimal: v0v1,1v2,2v3 = 7 • The greedy method does not work. • This is because it never looks ahead.

  7. Minimal Spanning Trees • It may be defined on Euclidean space points or on a graph. • G = (V, E): weighted connected undirected graph • Spanning tree : S = (V, T), T  E, S is a undirected tree • Minimal spanning tree (MST) : a spanning tree with the smallest total weight.

  8. Minimal Spanning Trees • A graph and one of its minimum spanning trees (MSTs)

  9. 圖的最小含括樹(MST) • 一個最小含括樹演算法 Kruskal演算法,採用貪婪法(greedy method)的策略來建構最小含括樹,也就是每次都是挑選最小成本且不形成cycle的邊加入最小含括樹T之中,如此經過n-1次的邊的挑選之後形成的累積成本必定是最小。 • 另一個Prim演算法所採用的策略稱為貪婪法(greedy method),也就是每次都是挑選最小成本的邊加入最小含括樹T之中,經過n-1次的挑選之後形成的累積成本必定是最小。由於每次挑選邊時,都是挑選一個具有連結X及V-X的邊,也就是說挑一個一頂點在X,而另一個頂點在V-X的邊,因此,將所挑選的邊加入T之後不會形成循環(cycle),這代表T是一棵樹(tree)。

  10. Kruskal’s algorithm for finding MST • Step 1: Sort all edges • Step 2: Add the next smallest weight edge to the forest if it will not cause a cycle. • Step 3: Stop if n-1 edges. Otherwise, go to Step2.

  11. Kruskal’s Algorithm • Algorithm Kruskal(G) • Input:G=(V, E)為無向加權圖(undirected weighted graph),其中V={v0,…,vn-1} • Output:G的最小含括樹(minimum spanning tree, MST) • T← //T為MST,一開始設為空集合 • while T包含少於n-1個邊 do • 選出邊(u, v),其中(u, v)E,且(u, v)的加權(weight)最小 • E←E-(u, v) • if ( (u, v)加入T中形成循環(cycle) ) then 將(u, v)丟棄 • else T←T(u, v) • return T

  12. Kruskal’s Algorithm-Construct MST

  13. 8 7 8 7 b c d b c d 9 9 4 4 2 2 11 11 a i 14 e a i 14 e 4 4 6 6 7 7 8 10 8 10 h g f h g f 2 2 1 1 8 7 8 7 b c d b c d 9 9 4 4 2 2 11 11 a i 14 e a i 14 e 4 4 6 6 7 7 8 10 8 10 h g f h g f 2 2 1 1

  14. 8 7 b c d 9 4 2 11 a i 14 e 4 6 7 8 10 h g f 2 1 8 7 b c d 9 4 2 11 a i 14 e 4 6 7 8 10 h g f 2 1

  15. Kruskal’s Algorithm- Construct MST How do we check if a cycle is formed when a new edge is added? • By the SET and UNION method. • A tree in the forest is represented as a SET. • If (u, v)  E and u, v are in the same set, then the addition of (u, v) will form a cycle. • If (u, v) E and uS1 , vS2 , then perform UNION of S1 and S2 .

  16. Time complexity for Kruskal’s algorithm • Time complexity: O(|E| log|E|) Sorting : O(|E| log|E|) Finding Element in a set O(|E| log|E|) : O(|E| ) |E|=n2 in the worst case Union two sets By amortized analysis O(n2 log n)

  17. Prim’s algorithm • Algorithm Prim(G) • Input:G=(V, E)為無向加權圖(undirected weighted graph),其中V={v0,…,vn-1} • Output:G的最小含括樹(minimum spanning tree, MST) • T← //T為MST,一開始設為空集合 • X←{vx} //隨意選擇一個頂點vx加入集合X中 • while T包含少於n-1個邊 do • 選出(u, v)E,其中uX且vV-X,且(u, v)的加權(weight)最小 • T←T(u, v) • X←X{v} • return T

  18. Time complexity for Prim’s algorithm • Outter loop: n-1  O(n) • Inner loop: choose minimal weight (u, v) for u in X and v in V-X.  O(n)(by using two vecters C1 and C2 propose by Prim) • Time complexity: O(n2) • If |E|<<n2 then adopt Kruskal’s algorithm.

  19. Using an adjacency matrix to represent a graph

  20. 16.3 Huffman codes • Prefix code: no codeword is also a prefix of some other codeword.

  21. Can be shown that the optimal data compression achievable by a character code can always be achieved with prefix codes. • Simple encoding and decoding. • An optimal code for a file is always represented by a binary tree.

  22. Tree correspond to the coding schemes

  23. Constructing a Huffman code HUFFMAN( C ) 1 n |C| 2 Q C 3 fori 1ton – 1 4 do allocate a new node z 5 left[z]  x  EXTRACT-MIN(Q) 6 right[z]  y  EXTRACT-MIN(Q) 7 f[z]  f[x] + f[y] 8 INSERT(Q,z) 9 return EXTRACT-MIN(Q) Complexity: O(n log n)

  24. The steps of Huffman’s algorithm

  25. The knapsack problem • n objects, each with a weight wi > 0 a profit pi > 0 capacity of knapsack: M Maximize Subject to 0  xi 1, 1  i  n

  26. The knapsack problem • The greedy algorithm: Step 1: Sort pi/wi into non-increasing order. Step 2: Put the objects into the knapsack according to the sorted sequence as much as possible.

  27. The knapsack problem • E.g. n = 3, M = 20, (p1, p2, p3) = (25, 24, 15) (w1, w2, w3) = (18, 15, 10) Sol: p1/w1 = 25/18 = 1.32 p2/w2 = 24/15 = 1.6 p3/w3 = 15/10 = 1.5 Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

  28. The greedy strategy does not work for the 0-1 knapsack

  29. 圖的最短路徑 • 由圖(graph)中的某個頂點(vertex)v到圖中的另一頂點u,若v到u之間存在一條路徑(path),則路徑中所經過的邊(edge)的加權值(weight)的總合稱為路徑的成本(cost)。所有路徑中具有最小成本的稱為最短路徑(shortest path)。 • 由於最短路徑具有許多應用,因此有許多求取最短路徑的演算法,以下我們介紹最有名的幾個演算法:(1). Dijkstra演算法(Dijkstra Algorithm) (2). Bellman-Ford演算法(Bellman-Ford Algorithm)及(3). All Pair Shortest Path Algorithm。

  30. The single-source shortest path problem • Graph and shortest paths from v0 to all destinations

  31. 圖的最短路徑 • Dijkstra演算法: Dijkstra演算法屬於求取單一來源(source)至所有目標(destination)頂點的一至多(one-to-all)最短路徑演算法

  32. 圖的最短路徑 • 我們將d[u]以加中括號的方式標記在每一個頂點旁,使用圖8-5來說明Dijkstra演算法求頂點A到每一個頂點最短路徑的過程。 • 若要讓Dijkstra演算法也能夠求出每一條最短路徑所經過的每一個頂點,則我們要將每一頂點在最短路徑中的前一頂點紀錄下來,其作法為增加一個陣列p(代表predecessor,前行者)來記錄最短路徑中的每一個頂點的前一頂點。並將Dijkstra演算法之if敘述修改如下: • if (d[u]+w[u][x]<d[x]) then d[x]←d[u]+w[u][x] p[x]←u //此敘述為新加入者,代表在最短路徑中頂點x的前一頂點為u

  33. 圖8-5

  34. 圖8-5

  35. 圖的最短路徑 • 以下我們以表8-1來說明Dijkstra演算法的執行過程:

  36. 圖的最短路徑 • Bellman-Ford演算法也是屬於求取單一來源至所有目標頂點的演算法,與Dijkstra演算法不同的是,Bellman-Ford演算法可以在具有負加權(negative weight)的圖上也正確的求出一到多(one-and-all)的最短路徑。以下是Bellman-Ford演算法:

  37. 圖的最短路徑 • Bellman-Ford演算法的精神是在第一次迴圈執行時即求出所有”1-邊路徑(one-edge path)”的最短路徑,而在第二次迴圈執行時即求出所有”2-邊路徑(two-edge path)” 的最短路徑,…依此類推。 • Floyd-Warshall演算法利用一個n×n(n為頂點總數)二維成本(cost)陣列c來記錄每一組頂點配對間的最短路徑成本,在啟始(initial)狀況時,c[i][i]=w[i][j],for each i and j。而當Floyd-Warshall演算法執行時會不斷的更新陣列c。 • 在第k次更新陣列c時,表示c中所紀錄的最短路徑是經由編號小於或等於k的頂點所造成的。因此,當第n次更新陣列c時,則表示c中所紀錄的最短路徑是經由所有頂點所造成的,這也就完成演算法所需求取的結果。

  38. 圖的最短路徑 • Floyd-Warshall的所有頂點對最短路徑(all-pair shortest path)演算法:

  39. 圖的最短路徑 • 以下我們在圖8-6中使用圖8-5中的圖(graph)來說明Floyd-Warshall的所有頂點對最短路徑演算法執行過程,請注意,我們使用代表在啟始狀況之值,代表在迴圈第一次,第二次,…,及第k次執行時陣列c的值。

  40. 圖8-6

  41. 圖8-6

  42. The End

More Related