1 / 46

CELLULAR STRUCTURE AND FUNCTION

CELLULAR STRUCTURE AND FUNCTION. BIG IDEA. Cells are the structural and functional units of all living organisms. Cell Discovery and Theory. Section 7.1. MAIN IDEA #1. The invention of the microscope led to the discovery of cells. Important Discoveries.

rhondasmith
Télécharger la présentation

CELLULAR STRUCTURE AND FUNCTION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CELLULAR STRUCTURE AND FUNCTION

  2. BIG IDEA • Cells are the structural and functional units of all living organisms.

  3. Cell Discovery and Theory • Section 7.1

  4. MAIN IDEA #1 • The invention of the microscope led to the discoveryof cells.

  5. Important Discoveries • Robert Hooke- observed cork with the first microscope and coined the term “cellulae” meaning small rooms • Anton van Leeuwenhoek- first to observe living organisms with a microscope • Both men led to many scientific discoveries (scientific revolution)

  6. Microscopes • Compound light microscope- uses visible light and a series of lenses to create a magnified image.

  7. Microscopes • Electron microscope- uses magnets to beamelectrons at thin specimens. • Only nonlivingcells and tissues can be observed with electron microscopes

  8. Cell Theory • One of the fundamental ideas of modern biology and includes the following three principles. • All living organisms are composed of one or more cells • Cells are the basic unit of structure and organization of all livingorganisms • Cells arise only from previously existing cells, with cells passingcopies of their genetic material on to their daughter cells

  9. Cell types • Prokaryotic- cells without a nucleusOR membrane bound organelles (mostly unicellular). • Eukaryotic- have a true nucleus and membrane bound organelles. • Both have plasma membranes!

  10. Eukaryotic structures • Nucleus- distinct central organelle that contains the cell’s genetic material in the form of DNA. • Organelles- enable specialized cell functions to take place in different parts of the cell at the same time. • Eukaryotes are thought to have evolvedfrom prokaryotes-Endosymbiont Theory

  11. The Plasma Membrane • Section 7.2

  12. MAIN IDEA #2 • The plasma membrane helps to maintain a cell’s homeostasis.

  13. Functions of the Plasma Membrane • Creates a thin, flexibleboundary that controls the movement of substances into and out of the cell • Selective permeability- capability to allow some substances pass through while keeping others out.

  14. Plasma Membrane • Phospholipid bilayer- phospholipids are arranged in a double layer, TAIL TO TAIL. • Phospholipids have a polarhead and two non-polar “tails.” • Creates the barrier that is polar at its surface and non-polar in the center. • Separates the inside and outside environments of the cell.

  15. THINK ABOUT IT!!! • How do hydrophobic substances cross a plasma membrane?

  16. Other membrane components • Transport proteins- move needed substances or wastes through the membrane. • Cholesterol- non-polar molecule among the phospholipids; keeps the “tails” from sticking together- fluidity • Carbohydrates (sugars)- help with cell identification

  17. Fluid Mosaic Model • Phospholipids can movesideways across the membrane • Other components can even move through/among the bilayer. • The fluidity of the membrane allows a scattered/random pattern arrangement of the components- mosaic.

  18. Structures and Organelles • Section 7.3

  19. MAIN IDEA #3 • Eukaryotic cells contain organelles that allow the specialization and the separation of functions within the cell.

  20. Cytoplasm • semifluid environment inside the plasma membrane. • In ALL cells • Prokaryotic- all chemical processes • Eukaryotic- processes take place inorganelles

  21. Cytoskeleton • Framework for the cell within the cytoplasm also aids in cell movement and other cellular activities. • ALL Eukaryotic cells • Microtubules- long, hollow protein cylinders • Microfilaments- thin protein threads.

  22. Cell Structures • Nucleus- control center of the cell that contains coded directions for the production of proteins and cell division. • Surrounded by a nuclear envelope • ALL Eukaryotic

  23. Cell Structures • Ribosomes- site of protein synthesis • Made of 2 components • Can be free floatingOR attached to the ER • Manufacturedby the nucleolus • ALL cells

  24. Cell Structures • Endoplasmic reticulum- highly folded membrane that is the site of protein and lipid synthesis • ALL Eukaryotic • Smooth- does NOT have ribosomes attached • Rough- HAS ribosomes associated within

  25. Cell Structures • Golgi apparatus- a flattened stack of tubular membranes that modifies proteins and packages them for distribution outside the cell • ALL Eukaryotic • Vesicles= packages; fuses with plasma membrane

  26. Cell Structures • Vacuoles- a membrane- bound vesicle for the temporary storage of materials • Plant cells- ONE large • Animal cells- a FEW small

  27. Cell Structures • Lysosomes- a vesicle that contains digestive enzymes for the breakdown of excess or worn-out cellular substances. • Animal cells ONLY

  28. Cell Structures • Centrioles- organelles that occur in pairs and are important for cell division • Animal cells • MOST protist

  29. Cell Structures • Mitochondria- a membrane-bound organelle that makes energy available to the rest of the cell. • ALL Eukaryotic cells

  30. Cell Structures • Chloroplasts- a double-membrane organelle with thylakoids containing chlorophyll where photosynthesis takes place. • Plant cells ONLY

  31. Cell Structures • Cell wall- an inflexiblebarrier that provides support and protects the plant cell. • Plant cells • Fungi cells • SOME Prokaryotes

  32. Cell Structures • Cilia and flagella- projections from cell surfaces that aid in locomotion and feeding. • Cilia- tiny hairs; SOME animal cells, protists cells, and Prokaryotes • Flagella- tail like; SOME animal cells, Prokaryotes, and some plant cells

  33. Cellular Transport • Section 7.4

  34. MAIN IDEA #4 • Cellular transportmoves substancesWITHIN the cell and moves substances INTO & OUT of the cell.

  35. Diffusion • The netmovement of particles from an area of high concentration to low concentration. • Dynamic equilibrium- condition, in which there is continuous movement but NO overall change

  36. Diffusion • Factors that affect diffusion rate • Concentration • Temperature • Pressure Ex: more collision= faster diffusion • Diffusion does NOT require any energy!

  37. Facilitated Diffusion • Uses transport proteins to move other ions and small molecules across the plasma membrane. • Still from high concentration to low concentration!

  38. Osmosis • Diffusion of water across a selectively permeable membrane. • Also exhibits dynamic equilibrium

  39. Isotonic • Cell is in a solution that has the same concentration of water and solutes. • Stable/Equilibrium

  40. Hypotonic • Cell is in a solution that has a lower concentration of solute. • Net movement of water INTO the cell

  41. Hypertonic • The concentration of the solute outside of the cell is higher than inside. • Net movement of water is OUT of the cell

  42. Active Transport • The net movement of particles against a concentration gradient. • Requires energy • Maintains homeostasis

  43. Na+/K+ Pump • Uses ATP energy to transport three sodium ions out of the cell while moving two potassium ions into the cell. + + +

  44. Large Particles • Endocytosis- intake of a substance • Exocytosis- secretion of a substance

More Related