1 / 28

Checking correctness properties of object-oriented programs

Checking correctness properties of object-oriented programs. K. Rustan M. Leino Microsoft Research, Redmond, WA. Lecture 3 EEF summer school on Specification, Refinement, and Verification 23 Aug 2002, Turku, Finland. Review of methods.

rlever
Télécharger la présentation

Checking correctness properties of object-oriented programs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Checking correctness properties of object-oriented programs K. Rustan M. LeinoMicrosoft Research, Redmond, WA Lecture 3EEF summer school on Specification, Refinement, and Verification23 Aug 2002, Turku, Finland

  2. Review of methods • class T { method m(this, x, y)requires Pre modifies w ensures Post} • class U <: T { mimpl m(this, x, y) isBody}

  3. Review of methods Turku trivia • class T { method m(this, x, y)requires Pre modifies w ensures Post} • class U <: T { mimpl m(this, x, y) isBody} The Other Side This Side

  4. Review of methods this • class T { method m(this, x, y)requires Pre modifies w ensures Post} • class U <: T { mimpl m(this, x, y) isBody} “self”

  5. Subtyping class Counter {method inc(this) …method dec(this) … …} class SimpleCounter <: Counter {field x: intmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1 …} class OpCounter <: Counter {field i: intfield d: intmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1 …} What should be the specifications of methods inc and dec?

  6. Abstract variables class Counter {abstractfield n: intmethod inc(this) requires true modifies this.n ensures this.n = this.n0 + 1method dec(this) requires true modifies this.n ensures this.n = this.n0 - 1… } class SimpleCounter <: Counter {field x: int rep this.n  this.xmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1… } class OpCounter <: Counter {field i: intfield d: int rep this.n  this.i – this.dmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1… } • Two questions: • How do we reason about the abstract expressions? • What do modifies clauses with abstract variables mean?

  7. Shape of verification condition UnivBackPred /\ BackPred(Program) ==> VC(MethodImpl)

  8. 2-dimensional heap • $ denotes current value of heap • (o,f) denotes a heap location • tr[ o.f ] = get($, o, f) • tr[ o.f0 ] = get($0, o, f) • get($, o, f) = select($, o, f) if f is concrete absfun(o, f)($) if f is abstract

  9. Meaning of rep • class T { rep this.a  E }gives rise to the following program-specific axiom: ( this :: this ≠ null /\ typeof(this) <: T ==> absfun(this, a) = (λ $ :: tr[ E ])) • Example:class OpCounter { rep this.n  this.i – this.d }gives rise to: ( this :: this ≠ null /\ typeof(this) <: OpCounter ==> absfun(this, n) = (λ $ :: get($,this,i) – get($,this,d)))

  10. Proving postconditions class Counter {abstractfield n: intmethod inc(this) requires true modifies this.n ensures this.n = this.n0 + 1method dec(this) requires true modifies this.n ensures this.n = this.n0 - 1… } class SimpleCounter <: Counter {field x: int rep this.n  this.xmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1… } class OpCounter <: Counter {field i: intfield d: int rep this.n  this.i – this.dmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1… }    

  11. Modifies clauses class Counter {abstractfield n: intmethod inc(this) requires true modifies this.n ensures this.n = this.n0 + 1method dec(this) requires true modifies this.n ensures this.n = this.n0 - 1… } class SimpleCounter <: Counter {field x: int rep this.n  this.xmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1… } class OpCounter <: Counter {field i: intfield d: int rep this.n  this.i – this.dmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1… }

  12. Dependency declarations class Counter {abstractfield n: intmethod inc(this) requires true modifies this.n ensures this.n = this.n0 + 1method dec(this) requires true modifies this.n ensures this.n = this.n0 - 1… } class SimpleCounter <: Counter {field x: int in n rep this.n  this.xmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1… } class OpCounter <: Counter {field i: int in nfield d: int in n rep this.n  this.i – this.dmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1… }

  13. Dependency relation • Relation (o,a) –S (p,b)states that in heap S,the value at location (o,a) may depend onthe value at location (p,b) • –S is a reflexive, transitive, and antisymmetric • For every concrete field f:( o, S, S’, E, p, x :: S’ = store(S, o, f, E) ==> get(S, p, x) = get(S’, p, x) \/ (p,x) –S (o,f))

  14. Dependency axioms • Declaration field f in a • allows this.a to be a function of this.f, and • gives rise to the following program-specific axiom: • ( o, S :: (o,a) –S (o,f))

  15. More dependencies class BigOpCounter <: Counter {field i: BigNumber maps x into nfield d: BigNumber maps x into n rep this.n  this.i.x – this.d.xmimpl inc(this) is this.i.add(1) mimpl dec(this) is this.d.add(1) …} class BigNumber {abstractfield x: Z method add(this, v)requires true modifies this.x ensures this.x = this.x0 + v …}

  16. More dependency axioms • Declaration field f maps x into a • allows this.a to be a function of this.f.x, and • gives rise to the following program-specific axiom: • ( o, S :: (o,a) –S (get(S,o,f), x))

  17. Meaning of modifies • modifies this.a, …means:modifies $ensures ( o, f :: get($,o,f) = get($0,o,f) \/ (this,a) –$0 (o,f) \/ (o,f) –$0 (this,a) \/ …)

  18. Negative dependency information • For any concrete field f: ( o, X, S, p :: (o,f) –S (p,X)  o=p /\ f=X) • Each declaration field f in a, b, cgives rise to the following program-specific axiom: ( o, X, S, p :: (o,X) –S (p,f) ==> (o=p /\ X=f) \/ (o,X) –S (p,a) \/ (o,X) –S (p,b) \/ (o,X) –S (p,c)) • Similar axioms are added for mapsinto

  19. Proving modifies clauses class Counter {abstractfield n: intmethod inc(this) requires true modifies this.n ensures this.n = this.n0 + 1method dec(this) requires true modifies this.n ensures this.n = this.n0 - 1… } class SimpleCounter <: Counter {field x: int rep this.n  this.xmimpl inc(this) is this.x := this.x + 1mimpl dec(this) is this.x := this.x – 1… } class OpCounter <: Counter {field i: intfield d: int rep this.n  this.i – this.dmimpl inc(this) is this.i := this.i + 1mimpl dec(this) is this.d := this.d + 1… }    

  20. Alias confinement • It seems that to support maps into soundly, one needs some form of alias confinement(For details, see “Using data groups to specify and check side effects”, Leino, Poetzsch-Heffter, Zhou, PLDI’02.)

  21. Exercise • Prove the following program correct: class Counter {abstractfield n: intmethod inc(this)requires true modifies this.n ensures this.n = this.n0 + 1method adjust(this, v)requires 0 ≤ v modifies this.n ensures this.n = this.n0 + vmimpl adjust(this, v) isif n=0 thenskipelse this.inc(); this.adjust(n-1)end}

  22. Example: valid/state paradigm class T {abstractfield valid: boolabstractfield state: unit method init(this, x, y, z)requires P(x,y,z) modifies this.valid, this.state ensures this.valid method operation0(this, x, y, z)requires this.valid /\ R0(x,y,z) modifies this.state ensures truemethod operation1(this, x, y, z)requires this.valid /\ R1(x,y,z) modifies this.state ensures true …method close(this)requires this.valid modifies this.valid, this.state ensures true field f: int in valid, statefield g: int in valid, statefield h: int in state rep this.valid  this.f < this.g … }

  23. Example: visitor class Container {field x: intfield y: intmethod put(this, z)requires true modifies this.x, this.yensures (this.x = z /\ this.y = this.y0) \/ (this.x = this.x0 /\ this.y = z)method pick(this) returns (z)requires true modifiesεensures z = this.x \/ z = this.ymethod map(this, visitor) …mimpl map(this, visitor) is visitor.apply(this.x); visitor.apply(this.y) } class Visitor {method apply(this, z) …}

  24. Example: visitor class Container {field x: intfield y: int …method map(this, visitor)requires visitor.valid modifies visitor.state ensures truemimpl map(this, visitor) is visitor.apply(this.x); visitor.apply(this.y) } class Visitor {abstractfield valid: boolabstractfield state: unitmethod apply(this, z)requires this.valid modifies this.state ensures true}

  25. Information hiding andmodular verification • Instead of proving Verif(Method, Program): UnivBackPred /\ BackPred(Program)==> VC(MethodImpl) prove Verif(Method, Module): UnivBackPred /\ BackPred(Module)==> VC(MethodImpl) where MethodImpl  Module  Program

  26. Modular soundness • Well-formed(Module) /\Verif(Method, Module)==> Verif(Method, Program)

  27. Summary • Method specifications apply unchanged to all method overrides • Data abstraction (abstract variables, abstraction dependencies, rep functions) gives subclasses the ability to operate differently • Information hiding poses restrictions on formal system for data abstraction, likely including alias confinement

  28. References • C.A.R. Hoare. “Proof of correctness of data representations”. In Acta Informatica 1(4), pp. 271-281, Springer, 1972. • K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technology. Technical Report Caltech-CS-TR-95-03, Caltech, 1995. • K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. Research Report 160, Compaq SRC, Nov. 2000. To appear in TOPLAS. • Peter Müller. Modular Specification and Verification of Object-Oriented Programs. PhD thesis, FernUniversität Hagen. Volume 2262 of LNCS, Springer, 2002. • K. Rustan M. Leino. “Data groups: Specifying the modification of extended state”. In OOPSLA ’98, pp. 144-153, ACM, 1998. • K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. “Using data groups to specify and check side effects”. In PLDI ’02, SIGPLAN Notices 37(5), pp. 246-257, ACM, May 2002.

More Related