1 / 19

Chapter 7: Heredity

Chapter 7: Heredity. Overview of this chapter: Mendelian laws Manipulation of Mendelian laws Backcross/Testcross Monohybrid/Dihybrid Cross Beyond Mendelian Inheritance Incomplete Dominance/Codominance Multiple Alleles Gene Interactions Pleiotropy/Epistasis

roden
Télécharger la présentation

Chapter 7: Heredity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7: Heredity Overview of this chapter: Mendelian laws Manipulation of Mendelian laws Backcross/Testcross Monohybrid/Dihybrid Cross Beyond Mendelian Inheritance Incomplete Dominance/Codominance Multiple Alleles Gene Interactions Pleiotropy/Epistasis Linked Genes, Cross-over, Linkage Mapping Barr Body Mutations Gene/Chromosomal Mutations, Nondisjunction

  2. Gregor Mendel The father of modern genetics is Gregor Mendel - Austrian monk, in 1850s - Bred garden peas in order to study patterns of inheritance - Theory of genetics is one of particulate inheritance - Mendelian Laws: Law of Dominance Law of Segregation Law of Independent Assortment

  3. Law of Dominance -When two organisms, each homozygous (pure) for two opposing traits are crossed, the offspring will be hybird (carry two different alleles; Gg) but will exhibit only the dominant trait (G) - Mendel’s first law: Law of dominance - The trait that remains hidden is known as the recessive trait (g)

  4. Thank you Jackie for the amazing paint skills. Law of Segregation - During formation of gametes, the two traits carried by each parent separate - Best exemplified by monohybrid cross - Trait that’s not evident in either parent appears in F1 generation

  5. Backcross or Testcross - Way to determine genotype of an individual plant or animal showing only dominant trait - Ex.) individual (B/_) is crossed with homozygous recessive (b/b) - If individual is in fact homozygous dominant, all offspring will be B/b and show dominant trait. - No offspring showing recessive trait. - If individual is hybrid (B/b) - one half of offspring show recessive trait - Therefore if any offspring show recessive trait, parent must be hybrid.

  6. Law of Independent Assortment - Applies when cross is carried out between two individuals hybrid for two or more traits are not on the same chromosome. - called dihybrid cross. - Law states that during gamete formation, alleles for one trait (e.g. height), segregate independently from the alleles of a gene for another trait (e.g. seed colour) - Only factor that determines how these alleles segregate (assort) is how the homologous pairs line up in metaphase of meiosis I, which is random. - However, if the genes are linked then they will not assort independently.

  7. The Dihybrid Cross - Cross between two F1 plants is called a dihybrid cross - Cross between individuals that are hybrid for two different individuals that are hybrid for two different traits (e.g. height and seed colour) - This cross can produce four different types of gametes: TY, Ty, tY, ty (dihybrid cross) - Many different genotypes possible in the resulting F2 generation. - Phenotype ratio of the dihybrid cross, 9:3:3:1, 9 tall, yellow; 3 tall, green; 3 short, yellow; and 1 short, green. F2: 9/16 tall, yellow; 3/16 tall, green; 3/16 short, yellow; 1/16 short, green.

  8. Multiple Alleles Codominance - both traits show Incomplete Dominance -Incomplete dominance is characterized by blending. - Neither trait is dominant, thus the convention for writing the genes uses a different convention: all capital letters. -When there are more than two allelic forms of a gene

  9. Gene Interactions - Pleiotropy: Ability of single gene to affect organism in several ways. - e.g. autosomal recessive disease; cystic fibrosis. - Epistasis - two separate genes control one trait - but one masks expression of other gene - Gene that masks the expression of the other gene is epistatic to the gene that's masked

  10. Polygenic Inheritance Polygenic: genus that vary along a continuum, e.g. skin colour, height, hair colour. Genes and the Environment - Environment can alter expression of genes - Development of intelligence is result of interaction of genetic predisposition and environment - Genus from previous generations “learned” of a way to “better” do something

  11. Linked Genes - genes on same chromosomes - Tend to be inherited together and do not assort independently (unless separated by cross-over) Sex-Linkage -Of 46 human chromosomes - 44 are autosome and 2 are sex chromosomes -traits carried on X chromosome are sex-linked -females (XX) inherit two copies of sex-linked genes -males (XY) inherit only one copy of sex-linked gene -mutated X-linked gene is: X- -can lead to sex-lniked traits such as colour blindness, hemophilia and Duchenne muscular dystrophy

  12. Important facts about sex-linked traits - All daughters of affected fathers are carriers! -Remember: Sex-linked traits are located on X chromosomes. - Son has 50% percent chance of inheriting sex-linked trait from carrier mother - No “carrier" state for X-linked traits in males. - If male has gene, he will express it! - Uncommon for female to have recessive sex-linked condition (for it to happen, she must inherit mutant gene from both parents)

  13. Cross-over and linkage mapping - The farther two genes on chromosomes - more likely to be separated by cross-over during meiosis. - When cross-over/recombination occur, one can see chiasmata (physical bridge built around point of exchange) - Result of cross-over = recombination - Major source of variation! - Map unit: distance within which recombination occurs 1 percent of the time. - Tells of order of linked gene on chromosome (pretty useful for mapping genome) Ex) 1) Genes A, B, D are linked 2) Cross-over or recombination frequencies for B and D is 5%, B and A is 30%, D and A is 25% 3) Draw linkage map from this (name BDA or ADB)

  14. Important Tools to Know Recombination Frequency: Number of recombinants ------------------------------------- x 100 Total number of offspring Pedigree:

  15. X-Inactivation - Barr body - In development of embryo in female mammal, one of X chromosome is inactivated in every somatic cell - Inactivation occurs randomly - Results in genetic mosaic - Some cells have one X inactivated, some cells have other X inactivated, therefore all cells of female mammals not identical. - Inactivated chromosome condenses into dark spot of chromatin - Barr body Remember: All female body cells have one Barr Body. Normal male cells have none.

  16. Mutations Mutations: any changes in the genome - Two types: gene mutations/chromosomal mutations - Chromosomal mutations can be seen with karyotype -Chromosomal aberrations: Deletion, Inversion, Translocation, Polyploidy, (Duplication) Some examples....

  17. Nondisjunction Nondisjunction: an error that sometimes occurs during meiosis in which homologous chromosome fail to separate as they should Aneuploidy: Abnormal number of chromosomes Triploid: Extra set of chromosomes (3n) Tetraploid: Organism with (4n) Polyploid: Organism with extra sets of chromosomes - Common in plants - Results in abnormally large size plants - Some cases: responsible for new species E.g Triploid: Extra set of chromosomes (3n) Strawberries (8n)

  18. Genomic Imprinting + Extranuclear Genes - Two inheritance patterns that are exceptions to Mendelian inheritance - genomic imprinting + extranuclear genes Genomic imprinting: a variation in phenotype depending on whether a trait is inherited from mother or father. - Occurs during gamete formation - caused by silencing of particular allele by methylation of DNA, therefore zygote expresses only one allele of imprinting gene - Imprint carried to all body cells and passed through generations - Imprinted gene located on autosomes Extranuclear gene are located on mitochondria and chloroplasts - DNA is small, circular, carry small number of genes - Linked to rare/severe inherited genes in humans - Mutations in these genes cause weakness/deterioration in muscles - Mitochondrial DNA is inherited only from mother because father’s mitochondria does not enter egg during formation.

  19. THANKS FOR WATCHING!!! Wrapping it up with a cool picture!

More Related