1 / 37

Paediatric Septic Shock

Paediatric Septic Shock. Corrine Balit . 1:15am: 3 year old female arrives at Triage with HR 180, RR 35, looks tired. Has had URTI symptoms for past couple of days. 1:25am: ICU/Paeds Reg called by ED doctor saying can you come and have a look 135am:You make your first assessment HR 180

sakura
Télécharger la présentation

Paediatric Septic Shock

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Paediatric Septic Shock Corrine Balit

  2. 1:15am: 3 year old female arrives at Triage with HR 180, RR 35, looks tired. Has had URTI symptoms for past couple of days. 1:25am: ICU/Paeds Reg called by ED doctor saying can you come and have a look 135am:You make your first assessment • HR 180 • Quiet, tired, opens eyes • Mod respiratory distress • Cap refill 4 seconds WHAT DO YOU DO?

  3. Why are we worried about it? • Still remains significant cause of morbidity and mortality • 5-30% of paediatric patients with sepsis will develop septic shock. • Mortality rates in septic shock are 20-30% (up to 50% in some countries).

  4. Recognition • Most people don’t recognise shock • Resuscitation must be done in a proactive time-sensitive manner • Every minute counts – “golden hour” • Every hour without appropriate resuscitation and restoration of blood pressure increases mortality risk by 40%

  5. How do we define it • Systemic Inflammatory Response Syndrome • Infection • Sepsis • Severe Sepsis • Septic Shock

  6. Systemic Inflammatory Response Syndrome Presence of 2 of the following criteria: • Core Temp >38.5 or < 36 degrees • Mean HR > 2SD for age or persitant elevation over 0.5-4hrs • If < 1yr old: bradycardia HR < 10th centile for age • Mean RR > 2 SD above normal for age • Leucocyte abnormality

  7. SEPSIS • SIRS in presence of suspected or proven infection Severe Sepsis • Sepsis + one of the following • CV organ dysfunction • ARDS • 2 or more organ dysfunction Septic Shock • Sepsis + CV organ dysfunction

  8. Cardiovascular dysfunction • Despite >40ml/kg Isotonic fluid bolus in 1 hour: • Decrease in BP <5th centile for age • Need for vasoactive drug to maintain BP • 2 of the following: • Unexplained metabolic acidosis • Increase lactate • Oliguria • Prolonged cap refill > 5 seconds • Core-peripheral temp gap >3 degrees

  9. Risk factors for Sepsis in Children • < 1 year of age • Very low birthweight infants • Prematurity • Presence of underlying illness eg chronic lung, cardiac conditions, malignancy • Co-morbidities • Boys • Genetic factors

  10. What makes you suspect shock?

  11. Clinical Manifestations • Fever • Increased HR • Increased RR • Altered mental state • Skin: • Hypoperfusion • Decreased capillary refill • Petechiae, purpura • Cool vs warm.

  12. Blood Pressure in Children • This is main difference with adults. • Blood pressure does not fall in septic shock until very late. • CO= HR x SV • HR in children much higher therefore BP falling is late. • Pulse pressure is often useful • Normal: Diastolic BP > ½ systolic BP.

  13. Investigations • Basic bloods: • FBC, EUC, LFT, CMP, Coags, Glucose • Inflammatory markers: PCT, CRP • Acid- Base status • Venous or arterial blood gas: • Lactate • Base deficit

  14. Investigations • Septic Work up • Urine, blood, sputum cultures • Viral cultures: throat, NPA, faeces, • Never do CSF in shocked patient • Imaging: • CXR, CT, MRI, PET scan, ECHO, Ultrasound

  15. Management

  16. General Principles • Early Recognition • Early and appropriate antimicrobials • Early and aggressive therapy to restore balance between oxygen delivery and demand • Early and goal directed therapy

  17. What is Goal Directed Therapy? • Based on studies in adults initially • Use fluid resuscitation, vasoactive infusions, oxygen to aim to restore balance between oxygen delivery and demand • Goals: • Capillary refill < 2 seconds • Urine ouptut > 1ml/kg/hr • Normal pulses • Improved mental state • Decreased lactate and base deficits • Perfusion pressures appropriate for age

  18. Recognise decreased mental status and perfusion Maintain airway and establish access O min Push 20mls/kg isotonic saline or colloid boluses up to and over 60mls/kg Antimicrobials, Correct hypoglycemia and hypocalemia 5 min 15 min Fluid Responsiveness FluidRefractoryshock Observe in PICU

  19. Recognise decreased mental status and perfusion Maintain airway and establish access • Vascular Access: • Only few minutes to be spent on obtaining IV access • Need to use IO if cant get access • May need to put 2 x IO in • Intubation + Ventilation • Clinical assessment of work of breathing , hypoventilation or impaired mental state • Up to 40% of cardiac output is used for work of breathing • Volume loading and inotrope support is recommended before and during intubation • Recommended: Ketamine, atropine and short acting neuromuscular blocking agent.

  20. Push 20mls/kg isotonic saline or colloid boluses up to and over 60mls/kg Antimicrobials, Correct hypoglycemia and hypocalemia • Fluid Resuscitation: • Needs to be given as push • May need to give up to 200mls/kg • Give fluid until perfusion improves. • Which Fluids • Isotonic vscollloid • Most evidence extrapolated from adults • Wills et al • RCT of cystalloidvs colloid in children with dengue fever • No difference between the two groups.

  21. 15min Fluid Refractory Shock Begin dopamine or peripheral adrenaline Establish central venous access Establish arterial access Titrate Adrenaline for cold shock and noradrenaline for warm shock to normal MAP-CVP and SVC sats>70% 60 min Catecholamine resistant shock

  22. Catecholamine Resistant Shock At Risk of adrenal insufficency – give hydrocortisone Not at Risk - don’t give hydrocortisone Normal Blood Pressure Cold Shock SVC < 70% Low Blood Pressure Cold Shock SVC < 70% Low Blood Pressure Warm Shock Add vasodilator or Type III PDE inhibitor Titrate volume and adrenaline Titrate volume & Noradrenaline Consider Vasopressin ECMO

  23. Rivers et al, NEJM 2001 • Single Centre , RCT in Emergency Department • Goal directed vs standard care in septic adults in first 6 hours in ED • Goal directed therapy consisted of • CVP 8-12mmHg • MAP > 65mmHg • Urine output >0.5ml/kg/hour • ScVO2 > 70% • Showed significant decrease in mortality • Cristisms: control group had higher mortality rate and benefits may be because group was monitored more closely

  24. Ceneviva et al, Pediatrics 1998 • Single centre, 50 children • Used goal directed therapy : CI 3.3-6Lmin/m2 in children with fluid refractory shock • Mortality from sepsis decreased by 18% when compared to 1985 study

  25. De Oliveira ICM 2008 • RCT , single centre • Use of 2002 guidelines with continous central venous O2 saturation monitoring and therapy directed to maintain ScVO2 > 70% • Mortality decreased from 39% to 12 %, • Number needed to treat 3.6

  26. Brierley and Carcillo CCM 2009 • Update of 2002 guidelines for goal directed therapy • Look at all studies who had adopted 2002 guidelines and their success. • Reported studies that showed decrease in mortality with adoption of 2002 guidelines. • New changes : • Inotrope via peripheral access • Fluid removal considered early

  27. What about Hydrocortisone? • Controversial • Rational is that there is hypothalamic-pituitary adrenal axis dyfunction in patients with septic shock • Current recommendations: • If child is at risk of adrenal insufficency and remains in shock should receive hydrocortisone • At risk defined as purpura fulminans, congenital adrenal hyperplasia, recent steroid exposure, hypothalamic/pituitary abnormality

  28. Evidence – Controversial • Annane D JAMA 2002 • Multicentre , RCT looked at use of hydrocortisone and fludrocortisone in septic shock. • Corticus Trial, NEJM 2008 • Mutlicentre, RCT • Hydrocortisone vs placebo in septic shock • No significant difference in mortality • Many criticisms • Inadequate power • Selection bias

  29. Evidence- paediatrics • No RCT in paediatric patients with sepsis • Markovitz : PCCM 2005 • Retrospective cohort study , 6000 paediatric patients • Systemic steriods associated with increased mortality • But no control in place for severity of illness or for dose.

  30. Other treatment • Maintain Glucose control • Nutrition • Maintain Hb > 10g/dL • GI protection • Early CVVH

  31. Activated Protein C • Inhibits factors Va and VIIIa – prevent generation of thrombin • Decreased inflammation through inhibition of platelet activation, neutrophil recruitment • Initially had popularity as possible treatment option in septic shock • Concern with it is risk of serious haemorrhage

  32. RESOLVE Study, Lancet 2007 • RCT, multicentre, international study in 477 children with severe sepsis. • Compared APC to placebo for 96 hrs • Primary end point: time to complete organ failure resolution • Study stopped early as interim analysis showed no benefit • More bleeding in APC group but not significantly different

  33. ECMO • Study published this month from RCH Melbourne • Looked at ECMO use in paediatric septic shock • 96% had at least 3 organ failure and 35% had a cardiac arrest prior to ECMO • 23 patients with refractory septic shock received central ECMO • 17 (74%) patients survived to be discharged from hospital.

More Related