Download
pertemuan 21 arithmetic i n.
Skip this Video
Loading SlideShow in 5 Seconds..
Pertemuan 21 Arithmetic: I PowerPoint Presentation
Download Presentation
Pertemuan 21 Arithmetic: I

Pertemuan 21 Arithmetic: I

97 Vues Download Presentation
Télécharger la présentation

Pertemuan 21 Arithmetic: I

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Pertemuan 21Arithmetic: I Matakuliah : T0324 / Arsitektur dan Organisasi Komputer Tahun : 2005 Versi : 1

  2. Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 )

  3. Chapter 6. Arithmetic: I (OFC5)

  4. x y Carry-in c Sum s Carry-out c i i i i i +1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 x y c + x y c + x y c + x y c s = = x Å y Å c i i i i i i i i i i i i i i i i y c x c x y c = + + i i i i i i i +1 E xample: x X 7 0 1 1 1 Carry-out Carry-in i y + Y = + 6 = + 0 1 1 0 0 1 1 0 0 c i c i +1 i Z 13 1 1 0 1 s i Legend for stage i Figure 6.1.Logic specification for a stage of binary addition.

  5. 1 0 0 1 1 ( - 13 ) ( ) ´ 0 1 0 1 1 + 11 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 Sign extension is 0 0 0 0 0 0 0 0 shown in blue 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 ( - 143 ) Figure 6.8.Sign extension of negative multiplicand.

  6. 0 1 0 1 1 0 1 0 0 + 1 + 1 + 1 + 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 + 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2's complement of 1 1 1 1 1 1 1 0 1 0 0 1 1 the multiplicand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 Figure 6.9.Normal and Booth multiplication schemes.

  7. 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 Figure 6.10.Booth recoding of a multiplier.

  8. 0 1 1 0 1 ( + 13 ) 0 1 1 0 1 1 1 0 1 0 0 - 1 +1 - 1 0 ´ ( - 6 ) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 ( - 78 ) Figure 6.11.Booth multiplication with a negative multiplier.

  9. Multiplier V ersion of multiplicand selected by bit i i - Bit i Bit 1 0 0 0 ´ M 0 1 + 1 ´ M 1 0 1 ´ M  1 1 0 ´ M Figure 6.12.Booth multiplier recoding table.

  10. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Worst-case multiplier + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 Ordinary multiplier 0 - 1 0 0 + 1 - 1 + 1 0 - 1 + 1 0 0 0 - 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 Good multiplier 0 0 0 + 1 0 0 0 0 - 1 0 0 0 + 1 0 0 - 1 Figure 6.13.Booth recoded multipliers.

  11. Pertemuan 22Arithmetic: II Matakuliah : T0324 / Arsitektur dan Organisasi Komputer Tahun : 2005 Versi : 1

  12. Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 )

  13. Chapter 6. Arithmetic: II (OFC6)

  14. Figure 6.16. Ripple-carry and carry-save arrays for the multiplication operation M  Q = P for 4-bit operands.

  15. (45) M 1 0 1 1 0 1 (63) Q 1 1 1 1 1 1 X A 1 0 1 1 0 1 B 1 0 1 1 0 1 C 1 0 1 1 0 1 D 1 0 1 1 0 1 E 1 0 1 1 0 1 F 1 0 1 1 0 1 (2,835) Product 1 0 1 1 0 0 0 1 0 0 1 1 Figure 6.17. A multiplication example used to illustrate carry-save addition as shown in Figure 6.18.

  16. Figure 6.19. Schematic representation of the carry-save addition operations in Figure 6.18.

  17. 1101 13 21 10101 274 100010010 26 1101 14 10000 13 1101 1 1110 1101 1 Figure 6.20. Longhand division examples.

  18. Shift left a a a q q n n - 1 0 n - 1 0 A Dividend Q Quotient setting Add/Subtract n + 1 -bit adder Control sequencer m m 0 n - 1 0 Divisor M Figure 6.21.Circuit arrangement for binary division.

  19. excess-127 exponent 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 ... 0 (There is no implicit 1 to the left of the binary point.) 9 Value represented = + 0.0010110 ¼ ´ 2 (a) Unnormalized value 0 1 0 0 0 0 1 0 1 0 1 1 0 ... 6 Value represented = + 1.0110 ¼ ´ 2 (b) Normalized version Figure 6.25.Floating-point normalization in IEEE single-precision format.

  20. Representation Examples +526 - 526 +70 - 70 Sign and magnitude 9' s complement 0526 9473 0070 9929 10' s complement 0526 9474 0070 9930 Figure P6.1. Signed numbers in base 10 used in Problem 6.3.

  21. 12 bits 5 bits 6 bits 1 bit for sign of number excess-15 fractional exponent mantissa + 0 signifies 1 signifies - Figure P6.2.Floating-point format used in Problem 6.25.

  22. (3) 0 0 1 1 (6) 0 1 1 0 - + ( 5 ) + 0 1 0 1 0 + ( - 3 ) + 1 1 1 0 0 0 1 0 0 0 1 0 0 - 2 1 1 0 1 3 0 0 1 0 0 1 1 1 0 1 0 0 1 1 Figure P6.3. 1's-complement addition used in Problem 6.36.