1 / 35

Pemetaan Tekstur

Pemetaan Tekstur. Outline. Memetakan tekstur ke permukaan datar Contoh-contoh dengan OpenGL Pemetaan ‘Bump’ MIPMAPS. Texture Mapping. Limited ability to generate complex surfaces with geometry Images can convey the illusion of geometry

Télécharger la présentation

Pemetaan Tekstur

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pemetaan Tekstur Pemetaan Tekstur

  2. Outline • Memetakan tekstur ke permukaan datar • Contoh-contoh dengan OpenGL • Pemetaan ‘Bump’ • MIPMAPS Pemetaan Tekstur

  3. Texture Mapping • Limited ability to generate complex surfaces with geometry • Images can convey the illusion of geometry • Images painted onto polygons is called texture mapping Pemetaan Tekstur

  4. Texture Maps • Images applied to polygons to enhance the visual effect of a scene • Rectangular arrays of data • Color, luminance, alpha • Components of array called texels • We’ve also had volumetric voxels Pemetaan Tekstur

  5. T V S U Texture Mapping • Texture map is an image, two-dimensional array of color values (texels) • Texels are specified by texture’s (u,v) space • At each screen pixel, texel can be used to substitute a polygon’s surface property (color) • We must map (u,v) space to polygon’s (s, t) space Pemetaan Tekstur

  6. Texture Mapping • (u,v) to (s,t) mapping can be explicitly set at vertices by storing texture coordinates with each vertex • How do we compute (u,v) to (s,t) mapping for points in between • Watch for aliasing • Watch for many to one mappings • Watch for perspective foreshortening effects and linear interpolation Pemetaan Tekstur

  7. Example Texture Map Applied to tilted polygon Pemetaan Tekstur

  8. Example Texture Map glVertex3d (s, s, s) glTexCoord2d(1,1); glVertex3d (-s, -s, -s) glTexCoord2d(1,1); Pemetaan Tekstur

  9. Example Texture Map glVertex3d (s, s, s) glTexCoord2d(5, 5); glVertex3d (s, s, s) glTexCoord2d(1, 1); Pemetaan Tekstur

  10. Texture Coordinates • Every polygon has object coordinates and texture coordinates • Object coordinates describe where polygon vertices are on the screen • Texture coordinates describe texel coordinates of each vertex (usually 0 -> 1) • Texture coordinates are interpolated along vertex-vertex edges • glTexCoord{1234}{sifd}(TYPE coords) Pemetaan Tekstur

  11. Textures • Texture Object • An OpenGL data type that keeps textures resident in memory and provides identifiers to easily access them • Provides efficiency gains over having to repeatedly load and reload a texture • You can prioritize textures to keep in memory • OpenGL uses least recently used (LRU) if no priority is assigned Pemetaan Tekstur

  12. Example use of Texture • Read .bmp from file • Use Image data type • getc() and fseek() to read image x & y size • fread() fills the Image->data memory with actual red/green/blue values from .bmp • Note • malloc() Image->data to appropriate size • .bmp stores color in bgr order and we convert to rgb order Pemetaan Tekstur

  13. Step 2 – create Texture Objects • glGenTextures(1, &texture[texture_num]); • First argument tells GL how many Texture Objects to create • Second argument is a pointer to the place where OpenGL will store the names (unsigned integers) of the Texture Objects it creates • texture[] is of type GLuint Pemetaan Tekstur

  14. Step 3 – Specify which texture object is about to be defined • Tell OpenGL that you are going to define the specifics of the Texture Object it created • glBindTexture(GL_TEXTURE_2D, texture[texture_num]); • Textures can be 1D and 3D as well Pemetaan Tekstur

  15. Step 4 – Begin defining texture • glTexParameter() • Sets various parameters that control how a texture is treated as it’s applied to a fragment or stored in a texture object • // scale linearly when image bigger than texture glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); • // scale linearly when image smaller than texture glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); Pemetaan Tekstur

  16. Step 5 – Assign image data • glTexImage2D(); Pemetaan Tekstur

  17. glTexImage2D – Arg 1 • GLenum target • GL_TEXTURE_2D • GL_PROXY_TEXTURE_2D • Provides queries for texture resources • Proceed with hypothetical texture use (GL won’t apply the texture) • After query, call GLGetTexLevelParamter to verify presence of required system components • Doesn’t check possibility of multiple texture interference Pemetaan Tekstur

  18. glTexImage2D – Arg 2 • GLint level • Used for Level of Detail (LOD) • LOD stores multiple versions of texture that can be used at runtime (set of sizes) • Runtime algorithms select appropriate version of texture • Pixel size of polygon used to select best texture • Eliminates need for error-prone filtering algorithms Pemetaan Tekstur

  19. glTexImage2D – Arg 3 • GLint internalFormat • Describes which of R, G, B, and A are used in internal representation of texels • Provides control over things texture can do • High bit depth alpha blending • High bit depth intensity mapping • General purpose RGB • GL doesn’t guarantee all options are available on given hardware Pemetaan Tekstur

  20. glTexImage2D – Args 4-6 • GLsizei width • GLsizei height • Dimensions of texture image • Must be 2m + 2b (b=0 or 1 depending on border) • min, 64 x 64 • GLint border • Width of border (1 or 0) • Border allows linear blending between overlapping textures • Useful when manually tiling textures Pemetaan Tekstur

  21. glTexImage2D – Args 7 & 8 • GLenum format • Describe how texture data is stored in input array • GL_RGB, GL_RGBA, GL_BLUE… • GLenum type • Data size of array components • GL_SHORT, GL_BYTE, GL_INT… Pemetaan Tekstur

  22. glTexImage2D – Arg 9 • Const GLvoid *texels • Pointer to data describing texture map Pemetaan Tekstur

  23. Step 6 – Apply texture • Before defining geometry • glEnable(GL_TEXTURE_2D); • glBindTexture(GL_TEXTURE_2D, texture[0]); • glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); Pemetaan Tekstur

  24. glTexEnv() First argument to function is always GL_TEXTURE_ENV Pemetaan Tekstur

  25. gluScaleImage() • Alters the size of an image to meet the 2m size requirement of OpenGL • Scaling performed by linear and box filtering glCopyTexImage2D() • Use current frame buffer contents as texture • Copy frame buffer to named texture location Pemetaan Tekstur

  26. glTexSubImage2D() • Replace a region of current working texture with a smaller texture • SubImage need not adhere to 2m size limitation • This is how you add data from your system’s camera to GL environment • glCopyTexSubImage2D • Frame buffer cut and paste possible too Pemetaan Tekstur

  27. Bump Mapping • Use textures to modify surface geometry • Use texel values to modify surface normals of polygon • Texel values correspond to height field • Height field models a rough surface • Partial derivative of bump map specifies change to surface normal Pemetaan Tekstur

  28. Bump Mapping Pemetaan Tekstur

  29. Displacement Mapping • Bump mapped normals are inconsistent with actual geometry. Problems arise (shadows). • Displacement mapping actually affects the surface geometry Pemetaan Tekstur

  30. Mipmaps • multum in parvo -- many things in a small place • A texture LOD technique • Prespecify a series of prefiltered texture maps of decreasing resolutions • Requires more texture storage • Eliminates shimmering and flashing as objects move Pemetaan Tekstur

  31. MIPMAPS • With versus without MIPMAP Pemetaan Tekstur

  32. MIPMAPS • Arrange different versions into one block of memory Pemetaan Tekstur

  33. gluBuild2DMipmaps • Automatically constructs a family of textures from original texture size down to 1x1 Pemetaan Tekstur

  34. Advanced Mipmaps • You can specify additional mipmap levels on the fly • MIN_LOD may reduce popping • MAX_LOD may reduce over compression • You can specify min mipmap level • Useful for mosaicing (Alphabet on a texture) Pemetaan Tekstur

  35. Referensi • 1: , 4:GraphicsSlides07.pdf , 9:Lecture14 • Buku Teks : • F.S.Hill, Jr., COMPUTER GRAPHICS – Using Open GL, Second Edition, Prentice Hall, 2001 • Foley, van Dam, Feiner, Hughes, and Philips, Introduction to Computer Graphics, Addison Wesley, 2000 • Lecture Notes / Slide-Presentation / Referensi lain yang diperoleh melalui internet : • Andries van Dam, Introduction to Computer Graphics, Slide-Presentation, Brown University, 2003, (folder : brownUni) • _______________, Interactive Computer Graphic, Slide-Presentation, (folder : Lect_IC_AC_UK) • ­­­­­­­­­­­­­­­­­­­­­Michael McCool, CS 488/688 :Introduction to Computer Graphics, Lecture Notes, University of Waterloo, 2003 (lecturenotes.pdf) • _______________, Computer Science 559, Slide-Presentation, Wisconsin University,(folder : Lect_Wisc_EDU) • http://graphics.lcs.mit.edu/classses/6.837/F98/Lecture4/Slide23.html , Slide-Presentation, MIT, (folder : MIT_CourseNote) • _______________, CS 319 : Advance Topic in Computer Graphics, Slide-Presentation, (folder : uiuc_cs) • _______________, CS 445/645 : Introduction to Computer Graphics, Slide-Presentation, (folder :COMP_GRAFIK) • Gladimir V.G. Baranoski, CS 488 : Introduction to Computer Graphics , Waterloo University • Prof. Peter Panfilov , http://cse.yeditepe.edu.tr/~osertel/courses/CSE484/index.html • http://www.cl.cam.ac.uk/Teaching/1998/AGraphics/l3a.html Pemetaan Tekstur

More Related