1 / 36

Chapter3

Chapter3. Digital Circuits. Preface. 5V. ‘ 1 ’. 2.5V. 0V. ‘ 0 ’. Threshold. ‘ 1 ’. 3V. 2V. ‘ 0 ’. ?. 2.5V. ?. 3V. 2V. High-state DC noise margin V OHmin -V IHmin. 5V. ‘1’. V OHmin. ‘1’. =4V. Digital Sender. 3V=. V IHmin. Digital Receiver. Abnormal. V ILmax. 2V=.

shaina
Télécharger la présentation

Chapter3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter3 Digital Circuits

  2. Preface 5V ‘1’ 2.5V 0V ‘0’ Threshold

  3. ‘1’ 3V 2V ‘0’ ? 2.5V ? 3V 2V

  4. High-state DC noise margin VOHmin-VIHmin 5V ‘1’ VOHmin ‘1’ =4V Digital Sender 3V= VIHmin Digital Receiver Abnormal VILmax 2V= ‘0’ VOLmax =1V Low-state DC noise margin VILmax-VOLmax ‘0’ 0V

  5. 3.1 CMOS and TTL Logic • Diode logic (DL) • Direct-coupled transistor logic(DCTL) • Resistor-transistor logic (RTL) • Resistor-capacitor transistor logic (RCTL) • Diode–transistor logic (DTL) • P-type metal–oxide–semiconductor logic (PMOS) • N-type metal–oxide–semiconductor logic (NMOS) • Cascode Voltage Switch Logic(CVSL) • Complementary Pass-transistor Logic(CPL) • Integrated injection logic (I2L) • Emitter coupled logic (ECL) also known as Current-mode logic (CML) • Positive emitter-coupled logic (PECL) • Low-voltage positive emitter-coupled logic (LVPECL) • Transistor–transistor logic (TTL) and variants(LS TTL) • Complementary metal–oxide–semiconductor logic (CMOS) • Bipolar complementary metal–oxide–semiconductor logic (BiCMOS)

  6. ■James L. Buie invented TTL logic circuits in 1961. ■Frank Wanlass invented CMOS logic circuits in 1963. ■The Texas Instruments 5400 family(1964) and 7400 family(1966)became an industry standard ■RCA CD400 family(1968) became an industry standard . A B

  7. 1.Logic Levels and Noise Margins CMOS Levels Voltage: VIHmin VILmax VOHmin VOLmax TTL Levels Output ‘1’ Output ‘1’ 5V Input ‘1’ 5V VOHmin=4.9V High-state DC noisemargin=1.4V Input ‘1’ VIHmin=3.5V VOHmin=2.7V Abnormal High-state DC noisemargin=0.7V VIHmin=2V VILmax=1.5V Abnormal VILmax=0.8V Low-state DC noisemargin=1.4V VOLmax=0.5V VOLmax=0.1V Input ‘0’ 0V 0V Output ‘0’ Input ‘0’ Output ‘0’ Low-state DC noisemargin=0.3V

  8. 2.Fanout P99 Table3-3 54/74HC00 Datasheet (NAND Gate) Driving capability IO II1 A ● Input(+) ‘1’ ‘1’ Output(-) II2 ‘1’ ? IIn ‘1’ Fanout=

  9. Ex.3-1 Fanout1= CMOS driving CMOS P99 Table3-3 =20 VOHmin=4.4V IOH1=-20μA High-state DC noise margin1 VOHmin=3.84V IOH2=-4mA = Low-state DC noise margin1 =1.25V VOLmax=0.1V IOL1=20μA VOLmax=0.33V IOL2=4mA Fanout2= IIH=1μA =4000 IIL=-1μA High-state DC noise margin2=0.69V Low-state DC noise margin2=1.02V

  10. Ex.3-2 CMOS driving LS-TTL Fanout= P99 Table3-3 P168 Table3-11 =10 IIH=20μA High-state DC noise margin=1.84V IIL=-400μA Low-state DC noise margin=0.47V VOHmin=3.84V IOH2=-4mA VOLmax=0.33V IOL2=4mA

  11. Ex3-3 Fanout1= LS-TTL driving LS-TTL P168 Table3-11 =20 IIH=20μA High-state DC noise margin1=0.7V IIL=-400μA Low-state DC noise margin1=0.3V VOHmin=2.7V IOH=-0.4mA VOLmax=0.5V IOL1=8mA Fanout2= VOLmax=0.4V IOL2=4mA Ex3-4 =10 High-state DC noise margin1=0.7V LS-TTL driving CMOS Low-state DC noise margin1=0.4V

  12. TTL Levels CMOS Levels 5V 5V VOHmin=4.9V High-state DC noisemargin=1.4V VIHmin=3.5V VOHmin=2.7V Abnormal High-state DC noisemargin=0.7V VIHmin=2V VILmax=1.5V Abnormal VILmax=0.8V Low-state DC noisemargin=1.4V VOLmax=0.5V VOLmax=0.1V 0V 0V Low-state DC noisemargin=0.3V TTL VOHmin<CMOS VIHmin Maybe cause logic confusing!

  13. 3.CMOS/TTL Compatible CMOS/TTL Compatible Levels 5V VOHCmin=4.9V Input TTL VOHTmin=3.84V High-state DC noisemargin Output CMOS VIHmin=2V Abnormal VILmax=0.8V VOLTmax=0.33V Homework: P175 3.1 3.20 3.22 3.57 VOLCmax=0.1V 0V Low-state DC noisemargin

  14. VDD = +5.0V Q2 VOUT VIN Q1 3.2 CMOS Gates 1.Inverter(NOT Gate) Functional behavior VIN(V) Q1 Q2 VOUT(V) 0.0(L) off on 5.0(H) 5.0(H) on 0.0(L) off 5.0(H) 0.0(L) 0.0(L) 5.0(H) IN OUT Logic symbol Circuit diagram

  15. VDD = +5.0V Q2 Q4 Z Q1 A Q3 2.Buffer Inverter is faster than Buffer! B A B B Z Circuit diagram A Z Logic symbol

  16. VDD Q2 Q4 Z A Q1 B Q3 3.NAND Gate Functional table A B Q1 Q2 Q3 Q4 Z on on L L off off H × × on on off √ √ L H off H off off on H L on H H L on off on off L H H H L × √ A H L Z × √ B Logic symbol Circuit diagram

  17. VDD Z A B 4.AND Gate NAND Gate is faster than AND Gate! A C B C C Z A Z B Circuit diagram Logic symbol

  18. VDD VDD A A B B Z Z 5.NOR Gate and OR Gate NOR Gate is faster than OR Gate! Inverter C A A Z Z B B NOR Gate Logic symbol OR Gate Logic symbol

  19. VDD VDD A A B B Z C Z D C D 6.AND-OR-INVERT and OR-AND-INVERT Gates OR-AND-INVERT Gate AND-OR-INVERT Gate

  20. EN_L A B EN EN_L A B EN 7.Transmission Gate Features: ■Short delays between A and B ■Bidirectional Applications: ■Multiplexers ■Analog switch Transmission Gate Logic symbol

  21. VOUT VOUT VT- VT+ 5.0 5.0 VT VIN VIN 2.1 2.9 5.0 2.5 1.5 3.5 5.0 Schmitt-Trigger characteristic 8.Schmitt-Trigger Input Ordinary inverter characteristic Logic symbol

  22. Ordinary inverter Output Output produced by an inverter with 0.8V hysteresis

  23. VCC Q2 EN OUT Q1 A EN A OUT 9.Tree-State Outputs EN=1 A OUT EN=0 Q1 and Q2 are off Output is in the floating state or high-impedance (Hi-Z). Application: ■Bus I/O Logic symbol

  24. Hard Disk Driver Display 40bit 16bit SDRAM 40bit Floppy Disk Driver ROM CPU 24bit 16bit 25bit 8bit 40bit CDROM Printer Keyboard USB SD Card Network Scanner Game Joystick

  25. Address Bus Floppy Disk Driver Data Bus Hard Disk Driver Display CDROM CPU ROM SDRAM Printer SD Card Control Bus Keyboard Just one device active at one time! Hi-Z to Low or High is slower than Low or High to Hi-Z.

  26. VCC R A Z B Z A Q1 B Q2 10.Open-Drain Outputs Choice of value for the Pull-up resistor P139 Pull-up Resistor Logic symbol Applications: ■Driving LEDs ■Driving Multisource Bused ■Wired Logic

  27. VCC A VCC B VCC C D Wired Logic VCC R Z1 Z2 Z Z3 E F

  28. A ≥1 Z B 1 A Z A & Z B Summary(1) Three basic logic functions: AND,OR,NOT A A Z A Z Z B B Z=A AND B Z=A OR B Z=NOT A =A·B =A+B GB symbol GB symbol GB symbol

  29. ≥1 & Summary(2) A A Z Z B B Z=A NAND B Z=A NOR B A A Z Z B B GB symbol GB symbol

  30. Truth Table A B Z Z 0 0 1 A A 0 = =1 Z Z Z=A B · 0 1 0 B B 1 0 1 1 0 1 1 0 1 Summary(3) A A Z Z B B Exclusive-NOR Gate Exclusive-OR Gate Z=A XNOR B Z=A XOR B =A B · GB symbol GB symbol

  31. A ≥1 & A & ≥1 B B Z Z C C D D Summary(4) A A B B Z Z C C D D GB symbol GB symbol

  32. VIN VIN VOUT 3.3 CMOS Dynamic Electrical Behavior 1.Speed of a CMOS device VIHmin ■Transition time VILmax ■Propagation delay The “on” transistor resistance Rise time andFall time The load capacitance Semiconductor Physics Input Capacitance Output Loading Multistage devices

  33. 2.Power Consumption Total Dynamic Power: Internal Power Dissipation: Load Capacitance Dissipation: Power-Dissipation Capacitance Power-Supply Voltage Transition Frequency Capacitance Load

  34. 3.4 Some problems of using CMOS ■Effects of Loading Loading an output beyond its Rated Fanout. ■Logic confusing ■Bad for Dynamic Characteristic ■Temperature of the device may increase ■Unused Inputs (Pulled up or Pulled down Resistor) Should never be left unconnected (or floating) ■ESD Electrostatic Discharge ■Latch-up Silicon-Controlled Rectifier (SCR) ■Current Spikes and Decoupling Capacitors

  35. 3.5 CMOS Logic Families HC and HCT AHC and AHCT VHC and VHCT FCT and FCT-T

  36. 3.6 Low-Voltage CMOS Logic and Interfacing Compatible Homework: P175 3.86 0.0 0.0 0.0 0.0 0.0

More Related