1 / 16

3.3 Perform Function Operations & Composition

3.3 Perform Function Operations & Composition. p. 180 What is the difference between a power function and a polynomial equation? What operations can be performed on functions? What is a composition of two functions? How is a composition of functions evaluated?.

shel
Télécharger la présentation

3.3 Perform Function Operations & Composition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3.3 Perform Function Operations & Composition p. 180 What is the difference between a power function and a polynomial equation? What operations can be performed on functions? What is a composition of two functions? How is a composition of functions evaluated?

  2. Operations on Functions: for any two functions f(x) & g(x) • Addition h(x) = f(x) + g(x) • Subtraction h(x) = f(x) – g(x) • Multiplication h(x) = f(x)*g(x) OR f(x)g(x) • Division h(x) = f(x)/g(x) OR f(x) ÷ g(x) • Composition h(x) = f(g(x)) OR g(f(x)) ** Domain – all real x-values that “make sense” (i.e. can’t have a zero in the denominator, can’t take the even nth root of a negative number, etc.)

  3. Power Functions

  4. Ex: Let f(x)=3x1/3 & g(x)=2x1/3. Find (a) the sum, (b) the difference, and (c) the domain for each. • 3x1/3 + 2x1/3 = 5x1/3 • 3x1/3 – 2x1/3 = x1/3 • Domain of (a) all real numbers Domain of (b) all real numbers

  5. The functions fand geach have the same domain: all nonnegative real numbers. So, the domains of f + gand f – galso consist of all nonnegative real numbers. a. f(x) + g(x) f(x) – g(x) b. c. the domains of f + gand f – g Letf (x)= 4x1/2 andg(x)=–9x1/2. Find the following. SOLUTION f (x) + g(x) = [4 + (–9)]x1/2 = –5x1/2 SOLUTION = 4x1/2 – (–9x1/2) = [4 – (–9)]x1/2 = 13x1/2 f (x) – g(x)

  6. Types Domains • All real numbers – if you can use positive numbers, negative numbers, or zero in the beginning functions and the result of combining functions. • All non-negative numbers -- if you can use positive numbers and zero in the beginning functions and the result of combining functions. • All positive numbers -- if you can use only positive numbers in the beginning function and the result of combining functions

  7. Ex: Let f(x)=4x1/3 & g(x)=x1/2. Find (a) the product, (b) the quotient, and (c) the domain for each. • 4x1/3 * x1/2 = 4x1/3+1/2 = 4x5/6 = 4x1/3-1/2 = 4x-1/6 = (c) Domain of (a) all reals ≥ 0, because you can’t take the 6th root of a negative number (Non-neg #’s). Domain of (b) all reals > 0, because you can’t take the 6th root of a negative number and you can’t have a denominator of zero (Positive #’s).

  8. The domain of f consists of all real numbers, and the domain of gconsists of all nonnegative real numbers. Because g(0) = 0, the domain of is restricted to all positive real numbers. f (x) f (x) 6x g(x) g(x) x3/4 = = 6x1/4 = 6x(1 – 3/4) Let f (x)= 6xand g(x) = x3/4. Find the following. SOLUTION SOLUTION the domain of

  9. f (x) + g(x) f (x) – g(x) Try it… Let f (x) = –2x2/3 and g(x) = 7x2/3. Find the following. SOLUTION f (x) + g(x) = (–2 + 7)x2/3 = –2x2/3 + 7x2/3 = 5x2/3 SOLUTION f (x) – g(x) = [–2 + ( –7)]x2/3 = –2x2/3 – 7x2/3 = –9x2/3 The domains of f and g have the same domain: all non-negative real numbers. So , the domain of f + g and f – g also consist of all non-negative real numbers.

  10. Composition of Functions

  11. Ex: Let f(x)=2x-1 & g(x)=x2-1. Find (a) f(g(x)), (b) g(f(x)), (c) f(f(x)), and (d) the domain of each. (a) 2(x2-1)-1 = (c) 2(2x-1)-1 = 2(2-1x) = (b) (2x-1)2-1 = 22x-2-1 = (d)Domain of (a) all reals except x=±1. Domain of (b) all reals except x=0. Domain of (c) all reals except x=0, because 2x-1 can’t have x=0.

  12. g(f(5)) ANSWER So, the value of g(f(5)) is 98. Let f(x) = 3x – 8 and g(x) = 2x2. Find the following. SOLUTION To evaluate g(f(5)), you first must find f(5). = 3(5) – 8 = 7 f(5) = 2(49) = 98. Theng( f(3)) = 2(7)2 = g(7)

  13. f(g(5)) ANSWER So, the value of f( g(5)) is 142. Let f(x) = 3x – 8 and g(x) = 2x2. Find the following. SOLUTION To evaluate f(g(5)), you first must find g(5). g (5) = 2(5)2 =2(25) =50 Thenf( g(5)) = f(50) = 3(50) – 8 = 150 – 8 = 142.

  14. Let f(x) = 2x–1 and g(x) = 2x + 7. Find f(g(x)),g(f(x)), and f(f(x)). Then state the domain of each composition. 2 2x + 7 = = = = f(2x+ 7) f(2x–1) f(2x–1) 4 = + 7 x SOLUTION f(g(x)) = 2(2x+ 7)–1 g(f(x)) = 2(2x–1) + 7 =4x–1 + 7 f(f(x)) = x = 2(2x–1)–1 The domain of f(g(x )) consists of all real numbers except x = –3.5. The domain of g(f(x)) consists of all real numbers except x = 0.

  15. What is the difference between a power function and a polynomial equation? The power tells you what kind of equation—linear, quadratic, cubic… • What operations can be performed on functions? Add, subtract, multiply, divide. • What is a composition of two functions? A equation (function) is substituted in for the x in another equation (function). • How is a composition of functions evaluated? Write the outside function and substitute the other function for x.

  16. Assignment Page 184, 3-27 every 3rd problem, 29-35 odd

More Related