1 / 34

Dick Bond

Dick Bond. Inflation Histories & their Cosmic Probes, now & then. Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ ln k) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc -1 LSS)

shing
Télécharger la présentation

Dick Bond

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dick Bond Inflation Histories & their Cosmic Probes, now&then Inflation Thenk=(1+q)(a) ~r/160< = multi-parameter expansion in (lnHa ~ lnk) ~ 10 good e-folds in a (k~10-4Mpc-1 to ~ 1 Mpc-1 LSS) ~ 10+ parameters? Bond, Contaldi, Kofman, Vaudrevange 07 V(f) Cosmic Probes now & then CMBpol (T+E,B modes of polarization), LSS  ~0 to 2 to 3/2 to ~.4 now, on its way to 0? Inflation Now1+w(a) goes to2(1+q)/3 ~1 good e-fold. only ~2params Zhiqi Huang, Bond & Kofman 07 V(f)? Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Lya Cosmic Probes Then JDEM-SN + DUNE-WL + Planck +ACT/SPT…

  2. Probing the linear & nonlinear cosmic web CMBology roulette inflation potential T=t+iq Inflation Histories (CMBall+LSS) subdominant phenomena (isocurvature, BSI) Secondary Anisotropies (CBI,ACT) (tSZ, kSZ, reion) Foregrounds CBI, Planck Polarization of the CMB, Gravity Waves (CBI, Boom, Planck, Spider) Non-Gaussianity (Boom, CBI, WMAP) Dark Energy Histories (& CFHTLS-SN+WL) wide open braking approach to preheating

  3. CBI pol to Apr’05@Chile Bicep @SP Quiet2 (1000 HEMTs) @Chile CBI2 to early’08 Acbar to Jan’06, 07f @SP QUaD @SP Quiet1 SCUBA2 Spider (12000 bolometers) 2312 bolometer @LDB APEX SZA JCMT @Hawaii (~400 bolometers) @Chile (Interferometer) @Cal ACT Clover @Chile (3000 bolometers) @Chile Boom03@LDB EBEX@LDB 2017 2004 2006 2008 LMT@Mexico 2005 2007 SPT LHC 2009 Bpol@L2 WMAP@L2to 2009-2013? (1000 bolometers) @South Pole ALMA DASI @SP (Interferometer) @Chile Polarbear (300 bolometers)@Cal CAPMAP Planck08.8 AMI (84 bolometers) HEMTs @L2 GBT

  4. CMB/LSS Phenomenology • Dalal • Dore • Kesden • MacTavish • Pfrommer • Shirokov • CITA/CIfAR there • Mivelle-Deschenes (IAS) • Pogosyan (U of Alberta) • Myers (NRAO) • Holder (McGill) • Hoekstra (UVictoria) • van Waerbeke (UBC) • CITA/CIfAR here • Bond • Contaldi • Lewis • Sievers • Pen • McDonald • Majumdar • Nolta • Iliev • Kofman • Vaudrevange • Huang • UofT here • Netterfield • Crill • Carlberg • Yee • & Exptal/Analysis/Phenomenology Teams here & there • Boomerang03 (98) • Cosmic Background Imager1/2 • Acbar07 • WMAP (Nolta, Dore) • CFHTLS – WeakLens • CFHTLS - Supernovae • RCS2 (RCS1; Virmos-Descart) Parameter data now:CMBall_pol SDSS P(k), BAO, 2dF P(k) Weak lens (Virmos/RCS1, CFHTLS, RCS2) ~100sqdeg Benjamin etal. aph/0703570v1 Lya forest (SDSS) SN1a “gold”(192,15 z>1) CFHTLS then:ACT (SZ),Spider, Planck, 21(1+z)cm GMRT,SKA Prokushkin

  5. WMAP3 sees 3rd pk, B03 sees 4th • ‘Shallow’ scan, 75 hours, fsky=3.0%, large scale TT • ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr B03+B98 final soon

  6. CBIpol 2.5 yrs EE, ~ best so far, ~QuaD TT BB TE

  7. CBI excess 04, 2.5 yrs cf. CBI excess Dec07, 5 yrs Jan08: Full ACBAR data ~ 4X includes 2005 observations

  8. Current high L state November 07 WMAP3 sees 3rd pk, B03 sees 4th CBI sees 4th 5th pk CBI excess 07

  9. ACT@5170m why Atacama? driest desert in the world. thus: cbi, toco, apex, asti, act, alma, quiet, clover CBI2@5040m

  10. forecast Planck2.5 100&143 Spider10d 95&150 Synchrotron pol’n Dust pol’n are higher in B Foreground Template removals from multi-frequency data is crucial

  11. PRIMARY END @ 2012? CMB ~2009+Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

  12. INFLATION THEN

  13. Standard Parameters of Cosmic Structure Formation Period of inflationary expansion, quantum noise  metricperturbations r < 0.6 or < 0.2895% CL Tensor Amplitude Spectral index of primordial tensor (Gravity Wave) perturbations Compton Depth to Last Scattering Surface When did stars reionize the universe? Spectral index of primordial scalar (curvature) perturbations Cosmological Constant What is the average curvature of the universe (we can see)? Density of Baryonic Matter Density of non-interacting Dark Matter Scalar Amplitude

  14. TheParameters of Cosmic Structure Formation Cosmic Numerology: aph/0611198 – our Acbar paper on the basic 7+; bckv07 WMAP3modified+B03+CBIcombined+Acbar06+LSS (SDSS+2dF) + DASI (incl polarization and CMB weak lensing and tSZ) ns = .958 +- .015(+-.005 Planck1) .93 +- .03 @0.05/Mpc run&tensor r=At / As < 0.28 95% CL (+-.03) <.36 CMB+LSS run&tensor < .05 ln r prior! dns /dln k =-.038 +- .024 (+-.005) CMB+LSS run&tensor prior change? As = 22 +- 2 x 10-10 1+w = 0.02 +/- 0.05 ‘phantom DE’ allowed?! Wbh2 = .0226 +- .0006 Wch2= .114 +- .005 WL = .73 +.02 - .03 h = .707 +- .021 Wm= .27 + .03 -.02 zreh =11.4 +- 2.5

  15. New Parameters of Cosmic Structure Formation Hubble parameter at inflation at a pivot pt =1+q, the deceleration parameter history order N Chebyshev expansion, N-1 parameters (e.g. nodal point values) Fluctuations are from stochastic kicks ~ H/2p superposed on the downward drift at Dlnk=1. Potential trajectory from HJ (SB 90,91):

  16. Constraining Inflaton Acceleration TrajectoriesBond, Contaldi, Kofman & Vaudrevange 07 “path integral” over probability landscape of theory and data, with mode-function expansions of the paths truncated by an imposed smoothness (Chebyshev-filter) criterion [data cannot constrain high ln k frequencies] P(trajectory|data, th) ~ P(lnHp,ek|data, th) ~ P(data| lnHp,ek ) P(lnHp,ek | th) / P(data|th) Likelihood theory prior / evidence Data: CMBall (WMAP3,B03,CBI, ACBAR, DASI,VSA,MAXIMA) + LSS (2dF, SDSS, s8[lens]) Theory prior uniform inlnHp,ek (equal a-prior probability hypothesis) Nodal points cf. Chebyshev coefficients (linear combinations) uniform in / log in / monotonic in ek The theory prior matters a lot for current data. Not quite as much for a Bpol future. We have tried many theory priors

  17. Old view: Theory prior = delta function of THE correct one and only theory Old Inflation 1980 -inflation Chaotic inflation New Inflation Power-law inflation SUGRA inflation Double Inflation Radical BSI inflation variable MP inflation Extended inflation 1990 Natural pNGB inflation Hybrid inflation Assisted inflation SUSY F-term inflation SUSY D-term inflation Brane inflation Super-natural Inflation 2000 SUSY P-term inflation K-flation N-flation DBI inflation inflation Warped Brane inflation Tachyon inflation Racetrack inflation Roulette inflation Kahler moduli/axion

  18. 1980 Chaotic inflation Power-law inflation Double Inflation Radical BSI inflation variable MP inflation Extended inflation 1990 Natural pNGB inflation 2000 Roulette inflation Kahler moduli/axion

  19. 1980 Power-law inflation 1990 Uniform acceleration V/MP4 ~ l exp(-2e1/2y), y=f/MP2-1/2 1-ns= -nt= 2e /(1-e); e= r/16 r = 0.26, ns= .97 r = 0.50, ns= .950 2000 MP-2= 8pG

  20. Chaotic inflation V/MP4 ~ l y2n, y=f/MP2-1/2 e(k) = (n/2) /(NI(k) +n/3), e=(n/y)2 , ns-1= - (n+1) / (NI(k) -n/6), nt= - n/ (NI(k) -n/6), forNI= 60, n=1,r= 0.13, ns= .97, nt= -.017, Dy~10 n=2,r= 0.26, ns= .95, nt= -.034, Dy~16 1980 1990 2000

  21. 1980 abffo92 1992 Natural pNGB inflation V/MP4 ~Lred4sin2(y/fred2-1/2 ) ns~ 1-fred-2 , e = (1-ns)/2 /(exp[(1-ns)NI (k)](1+(1-ns)/6) -1), exponentially suppressed; higher r if lowerNI & 1-ns to match ns=.96, fred~ 5, r~0.032 to match ns= .97, fred~ 5.8, r ~0.048 , Dy ~13 2000

  22. Old view: Theory prior = delta function of THE correct one and only theory New view: Theory prior = probability distribution on an energy landscape whose featuresare at best only glimpsed, huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape: moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization moving brane & antibraneseparations (D3,D7) Theory prior ~ probability of trajectories given potential parameters of the collective coordinatesX probability of the potential parameters X probability of initial conditions

  23. Roulette: which minimum for the rolling ball depends upon the throw; but which roulette wheel we play is chance too. The ‘house’ does not just play dice with the world. 1980 focus on “4-cycle Kahler moduli in large volume limit of IIB flux compactifications”Balasubramanian, Berglund 2004, + Conlon, Quevedo 2005, + Suruliz 2005 Real & imaginary parts are both important BKVP06 1990 2006 typical r ~ 10-10 &Dy<.002 !! As & ns~0.97 OK but by statistical selection! running dns/dlnk exists, but small because small observable window Roulette inflation Kahler moduli/axion

  24. energy scale of inflation & r V/MP4 ~ Ps r (1-e/3)3/2 V~ (1016Gev)4r/0.1 (1-e/3) roulette inflation examples V~ (few x1013Gev)4 H/MP ~ 10-5 (r/.1)1/2 inflation energy scale cf. the gravitino mass (Kallosh & Linde 07) if a KKLT/largeVCY-likegeneration mechanism 1013Gev (r/.01)1/2 ~ H < m3/2cf. ~Tev

  25. Planck1yr simulation:input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. rin esorder 5 log prior esorder 5 uniform prior GW/scalar curvature: current from CMB+LSS: r < 0.6 or < 0.25(.28)95%;good shot at0.0295% CL with BB polarization (+- .02 PL2.5+Spider), .01 target BUT foregrounds/systematics?? But r-spectrum. But low energy inflation

  26. Planck1 simulation:input LCDM (Acbar)+run+uniform tensor PsPtreconstructed cf. input of LCDM with scalar running & r=0.1 esorder 5 uniform prior esorder 5 log prior lnPslnPt(nodal 5 and 5)

  27. SPIDER Tensor Signal • Simulation of large scale polarization signal No Tensor Tensor http://www.astro.caltech.edu/~lgg/spider_front.htm

  28. B-pol simulation:~10K detectors > 100x Planck input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. rin esorder 5 log prior esorder 5 uniform prior a very stringent test of the e-trajectory methods: A+ also input trajectory is recovered

  29. INFLATION NOW

  30. Inflation Now1+w(a)= esf(a/aeq;as/aeq;zs)to(a)x3/2 = 3(1+q)/2 ~1 good e-fold. only ~2 eigenparamsZhiqi Huang, Bond & Kofman07: 3-param formula accurately fits slow-to-moderate roll & even wild rising baroque late-inflaton trajectories, as well as thawing & freezing trajectories Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Lya • es= (dlnV/dy)2/4 = late-inflaton (potential gradient)2 • =0.0+-0.25 now; • weak as < 0.3 (zs>2.3) now • esto +-0.07then Planck1+JDEM SN+DUNE WL, weak as <0.21 then, (zs>3.7) • 3rdparamzs (~des /dlna) ill-determined now & then • cannot reconstruct the quintessence potential, just the slope es& hubble drag info (late-inflaton mass is < Planck mass, but not by a lot) Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1

  31. 45 low-z SN + ESSENCE SN + SNLS 1st year SN+ Riess high-z SN, 192 “gold”SN all fit with MLCS illustrates the near-degeneracies of the contour plot

  32. Measuring the 3 parameters with current data • Use 3-parameter formula over 0<z<4 & w(z>4)=wh(irrelevant parameter unless large). as<0.3

  33. Forecast: JDEM-SN(2500 hi-z + 500 low-z)+ DUNE-WL(50% sky, gals @z = 0.1-1.1, 35/min2 ) + Planck1yr Beyond Einstein panel: LISA+JDEM es=0.02+0.07-0.06 ESA as<0.21 (95%CL)

  34. End

More Related