1 / 20

From ship-tethered to free drifting imaging systems in the ocean;

SS16: Opportunities in the Study of Ocean Particle Flux@. From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand and model particle flux. Stemmann L., Guidi, L., Boss, E., Claustre, H. `

sook
Télécharger la présentation

From ship-tethered to free drifting imaging systems in the ocean;

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SS16: Opportunities in the Study of Ocean Particle Flux@ From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand and model particle flux. Stemmann L., Guidi, L., Boss, E., Claustre, H. ` UPMC Université Paris 06, UMR7093, Laboratoire d’Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France} School of Marine Sciences, 5706 Aubert Hall, University of Maine, Orono, ME 04469-5706

  2. Biological pump or Geochemical pump ? CO2 N: Nutriment P: Phytoplancton Z: Zooplancton D: Detritus ? CO2

  3. Biological pump or Geochemical pump ? CO2 Advection, turbulence CO2

  4. Biological pump or Geochemical pump ? CO2 Advection, turbulence • 4D Observation of individuals and particles • Ecosystem Realistic Simplification CO2

  5. Strong development of imaging systems and also their miniaturization for in situ monitoring 1) Laboratory instruments FLOWCAM, ZOOSCAN, ... 2) In situ instruments used from ships UVP, VPR, SIPPER, Underwater Digital Holocamera , ... 3) In situ instruments on autonomous vehicles SOLOPC Checkley et al., 2008 Benfield et al., 2007

  6. Examples of PSD and vertical flux from ship tethered imaging sensors Lampitt et al., 1993, North Atl. and then Graham et al., 2000, Monterey Bay Stemmann et al., 2000, Mediterranean Sea Goldthwait et al., 2006, Monterey Bay ... Hypothesis: DVM or diel cycle in upper turbulence Short time scales Long time scales Stemmann et al., 2002 UVP3 in the Mediterranean Sea

  7. Vertical patterns of particle size spectra at regional scales Coast/ocean interactions Gardner and Walsh, 1990, Gulf of Mexico, McCave et al., 2001, North Atlantic Stemmann et al., 2008 Mediterranean sea

  8. Vertical patterns of particle size spectra at regional scales Open sea Iversen et al., 2011, Tropical Atlantic Guidi et al., 2012, HOT The Octopus eye

  9. Examples of Global biogeography of mesopelagic macrozooplankton from ship tethered imaging sensor (UVP4) (UVP5, see HydroptiC stand for details) 200 profils of the UVP4 (6 years of sampling) 50-1000m, no size measurments Stemmann et al., 2008 1500 profiles UVP5 since 2008 • Sarcodines : an important component of macrozooplankton community (<40%). • Definition of 9 provinces that fits Longhurst biogeochemical regions (Romagnan et al., session 72)

  10. Examples of PSD and vertical flux from ship tethered imaging sensor UVP5 (Guidi et al., session 58) 897 estimates of b distributed over 34 provinces combined with Sed. trap and Th. fluxes 2868 values of b Global b: -0.75 Global Sequestration: 0.37 Gt C year-1

  11. Systems based on optics mounted on floats NABE2008, Briggs et al., 2008 Monterey Bay, Petrik et al., 2013

  12. What are the Opportunities in the Study of Ocean Particle Flux ? • Global network of observations • ARGO-> BIOARGO+vision • fixed stations + vision • cruises of opportunity • Oceanographic data center for QC and large diffusion Particulate Organic Carbon (size spectra) D • Ecosystem monitoring • - Data assimilation in models for Carbone fluxes and marine ressources. macro and mesoplankton (Taxa size spectra) Z P Pico and microplankton (taxa, size spectra) N CTD and geochemical data

  13. What could Biogeochemical models represent ? P Qp P2 P3 P2 P1 P1 Q Z2 Z Z1 D N Biomass (x) B1 D Stemmann and Boss (2012)

  14. What could Biogeochemical models represent ? P2 P3 P3 P1 Q Z2 Z1 Qd Size(x) B1 N D N size Stemmann and Boss (2012)

  15. 150 ARGO floats, 17-22 February 2013 150 ARGO floats, 17-22 February 2023 Temperature (°C) POC Vertical flux (mg C m-2 d-1)

  16. UVP UVP Do we all agree ? Particle ISIS LOKI Plankton ZOOVIS ISIS SIPPER LOPC VPR Then we are ready for a network of octopus eyes.

  17. THE KEY OF THE SUCCESS for such a network: • AGREED PROCEDURES (computer assisted recognition, intercalibration) • AGREED DATA MANAGEMENT • AGREED DATA DISTRIBUTION • AGREED MODELING FRAMEWORKS • SUMMER SCHOOLS FOR THE USERS • The BIOgeochemical particle/plankton community is getting to a sufficient maturity in using images. • These are propositions that we could discuss now building on the biogeochemical community experience

  18. Thank you BIOSOPE Gabriel Gorsky Marc Picheral Pieter Vandromme, JB Romagnan, F. Roullier, Nicolas Mayot, Rizlaine IdAoud, Fabien Lombard ET tous les collègues French programs: PROOF, PNEC, PICS EC programs: EUROCEAN (FP6), SESAME(FP6), GROOM (FP7), JERICO (FP7)

  19. How will we treat the imaging data for an operational monitoring program ? Image acquisition (0-2000 m) Image in situ analysis (Size threshold) Real time Delayed time Laboratories all particles (non validated prediction), CTD, optic Validation (Aggregates – Zooplankton) International Data Bases Particle size spectra CTD Zooplankton size spectra

  20. REAL TIME, for example: UVP data format for ODV MALINA cruise: 154 UVP profils (25-1800m), one PSD every 5 m, with CTD, Rosette, 8Mo CAN BE SEND BY ARGO, IRIDIUM METADATA: context //<Creator>marc.picheral@obs-vlfr.fr</Creator> //<CreateTime>2010-08-20T10:01:12</CreateTime> //<Source>baseuvp5_malina2009</Source> //<SourceLastModified>31-Jan-000T</SourceLastModified> //<DataField>Ocean</DataField> //<DataType>Profiles</DataType> //<Method>Particle abundance and volume from the Underwater Vision Profiler. the ......</Method> //<Owner1>Lars.stemmann[at]obs-vlfr.fr http://www.obs-vlfr.fr/LOV/ZooPart/Portal/ Laboratoire d'Oceanographie de Villefranche B.P. 28 Villefranche-Sur-Mer France +33 (0)4 93 76 38 11 +33 (0)4 93 76 38 34 http://www.obs-vlfr.fr/LOV/ZooPart/UVP/</Owner1> Cruise:METAVAR:TEXT:20;Station:METAVAR:TEXT:20;Rawfilename:METAVAR:TEXT:20;UVPtype:METAVAR:TEXT:6;CTDrosettefilename:METAVAR:TEXT:40;yyyy-mm-dd hh:mm:METAVAR:TEXT:40;Latitude [degrees_north]:METAVAR:DOUBLE;Longitude [degrees_east]:METAVAR:DOUBLE;Depth [m]:PRIMARYVAR:DOUBLE;Sampled volume[L];LPM (0.06-0.53mm)[#/L];LPM (0.53-1.06mm)[#/L];LPM (1.06-2.66mm)[#/L];LPM (0.06-2.66mm)[#/L];LPM biovolume (0.06-0.53mm)[ppm];LPM biovolume (0.53-1.06mm)[ppm];LPM biovolume (1.06-2.66mm)[ppm];LPM biovolume (0.06-2.66mm)[ppm];LPM (0.06-0.07mm)[#/L];LPM (0.07-0.09mm)[#/L];LPM (0.09-0.11mm)[#/L];LPM (0.11-0.14mm)[#/L];LPM (0.14-0.17mm)[#/L];LPM (0.17-0.21mm)[#/L];LPM (0.21-0.27mm)[#/L];........;LPM biovolume (4.22-5.32mm)[ppm];LPM biovolume (5.32-6.7mm)[ppm];LPM biovolume (6.7-8.44mm)[ppm];LPM biovolume (8.44-10.64mm)[ppm];LPM biovolume (10.64-13.4mm)[ppm];LPM biovolume (13.4-16.88mm)[ppm];LPM biovolume (16.88-21.27mm)[ppm];LPM biovolume (21.27-26.79mm)[ppm];Temp;Trans;Fluo;Sal;Dens;svan;N2;sigt;theta;sigthe;FreezT-;O2;pH;NO3;Par;SPar malina2009;malina001;HDR20090718234959;uvp5;0902_001;2009-07-18 23:49:59;70.4808;-135.1083;5;79.56;405.8698;0.33937;0;406.2092;0.53393;0.054187;0;0.58812;0.000000;0.000000;255.417300;76.533434;38.800905;21.669180;7.302665;4.160382;1.458019;0.527903;0.226244;0.075415;0.037707;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.126479;0.085347;0.076972;0.076662;0.049646;0.053766;0.038764;0.026295;0.023097;0.014930;0.016160;0.000000;0.000000;0.0 METADATA: file content DELAYED TIME: adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ? Wait for a recovery of the instrument ? DATA

More Related