1 / 33

SURVEYING – I (CE- 128)

SURVEYING – I (CE- 128). TRAVERSING. NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza. SURVEYING – I (CE- 128).

sora
Télécharger la présentation

SURVEYING – I (CE- 128)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SURVEYING – I(CE- 128) TRAVERSING • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  2. SURVEYING – I(CE- 128) • A series of connected straight lines each joining two points on the ground, is called a ‘traverse’. End points are known as traverse stations & straight lines between two consecutive stations, are called traverse legs. • A traverse survey is one in which the framework consists of a series of connected lines, the lengths and directions of which are measured with a chain or a tape, and with an angular instrument respectively. • Traverses may be either a closed traverse or an open traverse: • 1. Closed Traverse: A traverse is said to be closed when a complete circuit is made, i.e. when it returns to the starting point forming a closed polygon or when it begins and ends at points whose positions on plan are known. The work may be checked and “balanced”. It is particularly suitable for locating the boundaries of lakes, woods, etc. and for the survey of moderately large areas. 2. Open Traverse: A traverse is said to be open or unclosed when it does not form a closed polygon. It consists of a series of lines extending in the same general direction and not returning to the starting point. Similarly, it does not start and end at the points whose positions on plan are known. It is most suitable for the survey of a long narrow strip of country e.g. the valley of a river, the coast line, a long meandering road, or railway, etc. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  3. SURVEYING – I(CE- 128) • Classification of traverses based on instruments used: 1. Chain Traversing: In chain traversing, the entire work is done by a chain or tape & no angular measuring instrument is needed. The angles computed by tie measurements are known as chain angles.2. Compass Traversing: The traverse in which angular measurements are made with a surveying compass, is known as compass traversing. The traverse angle between two consecutive legs is computed by observing the bearings of the sides.3. Plane Table Traversing: The traverse in which angular measurements between the traverse sides are plotted graphically on a plane table with the help of an alidade is known as plane table traversing.4. Theodolite Traversing: The traverse in which angular measurements between traverse sides are made with a theodolite is known as theodolite traversing.5. Tachometric Traversing: The traverse in which direct measurements of traverse sides by chaining is dispensed with & these are obtained by making observations with a tachometer is known as tachometer traversing. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  4. SURVEYING – I(CE- 128) • Important Technical Terms:1. Meridians and Bearings: The direction of survey lines may be defined in two ways: a). Relatively to each other b). Relatively to some reference direction In the first case, directions are expressed in terms of the angles between two consecutive lines. In second case, these are expressed in terms of bearings. The fixed direction on the surface of the earth with reference to which, bearings of survey lines are expressed is called a meridian. The meridians of reference directions employed in surveying may be one of the following: a). True Meridian b). Magnetic Meridian c). Grid Meridian* d). Arbitrary Meridian • The line of intersection of the earth surface by a plane containing north pole, south pole and the given place is called true meridian or geographical meridian. • The geometrical longitudinal axis of a freely suspended & properly balanced magnetic needle, unaffected by local attractive forces, defines the magnetic north-south line which is called the magnetic meridian. • The convenient direction assumed as meridian for measuring bearings of survey lines is known as arbitrary meridian. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  5. SURVEYING – I(CE- 128) • The horizontal angle between the reference meridian and the survey line measured in a clockwise direction is called bearing. • a). True Bearing b). Azimuth c). Magnetic Bearing d). Grid Bearing • The horizontal angle between the true meridian and a line measured in a clockwise direction is called true bearing of the line. • The smaller angle which a survey line makes with true meridian is called azimuth. • The horizontal angle which a line makes with the magnetic meridian is called magnetic bearing. • Bearings of survey lines referred to and reckoned from grid lines are called grid bearings. • The angle between the true meridian & the magnetic meridian at any place is known as magnetic declination, whereas, the angle between the true meridian & the grid meridian at any place is known as grid convergence. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  6. SURVEYING – I(CE- 128) • Designation of Bearings: 1. The Whole Circle Bearing System (W.C.B) 2. The Quadrantal Bearing System (Q.B)1. The W. C. B System: The W. C. B system is also sometimes known as Azimuthal System. In this system, bearing of a line is measured from the true north or magnetic north in clockwise direction. The value of a bearing may vary from 0° to 360°, utilizing the whole circle of graduations. Prismatic Compass is graduated on whole circle bearing system. 2. The Q. B System: In Q. B System, bearings of survey lines are measured eastward or westward from North and South whichever is nearer. In this system, both north and south directions are used as reference meridians & bearings are reckoned either clockwise or anticlockwise, depending upon the position of the line. The quadrant in which a line lies is mentioned to specify the location of the line. Surveyor’s compass is graduated in quadrantal bearing system. Bearings designated by Q.B. System are sometime called Reduced Bearings. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  7. SURVEYING – I(CE- 128) Conversion Of W.C.B into Q.B • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  8. SURVEYING – I(CE- 128) Conversion Of Q.B into W.C.B • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  9. SURVEYING – I(CE- 128) • Conversion of bearing from one system to the other: • 1.Convert the following whole circle bearing to quadrantal bearing: • a. 680 32’ • b. 1320 12’ • c. 2360 37’ • d. 3340 52’2. Convert the following reduced bearing to whole circle bearings: • a. N 360 16’E b. S 280 14’E c. S 470 26’ W d. N 580 24’ W • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  10. SURVEYING – I(CE- 128) • FORE and BACK Bearings: Every line may be defined by two bearings, one observed at either end of the line. Both the bearings expressed in W.C.B System differ each other by 180°. The bearing of a line in the direction of the progress of survey, is called Fore or Forward Bearing (F.B) while the bearing in the opposite direction of the progress of survey is known as Reverse or Back Bearing (B.B). • Relationship Between Fore and Back Bearings: a). W.C.B System: • Back bearing = Fore Bearing + 180˚ • Positive sign is used when fore bearing is less than 180˚ and negative sign is used when the fore bearing is greater than 180˚. • b). Q.B System: • To convert the fore bearing of a line into its back bearing in Q.B system, replace N by S, S by N, E by W and W by E , without changing the numerical value of the bearing. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  11. SURVEYING – I(CE- 128)

  12. SURVEYING – I(CE- 128) 1. The following are the observed fore bearing of the lines: a. AB, 380 14’ ; BC, 1420 18’ ; CD, 2080 37’ and DE, 3180 26’ b. Find their back bearings. 2. The fore bearings of the lines are as follows: a. AB: N 320 12’ E; BC: S 430 18 E; CD: S 260 30’ W; DE: N 650 24’ W. b. Find their back bearings • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  13. SURVEYING – I(CE- 128) • Calculation of included angles from bearings: • knowing the bearings of two adjacent lines, their included angles may be easily calculated as under: • a) Given W.C.B of lines: • let W.C.B of the line AB = α̊ • W.C.B of the line AB = β̊ • Therefore , the included angle BAC = <NAC - <NAB • = β – α • = Bearing of AC – bearing of AB • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  14. SURVEYING – I(CE- 128) b) Given Q.B of lines: A diagram may be drawn and bearings of the lines plotted in their respective quadrants. The included angle is calculated from one of the under mentioned formulae: If the bearings have been measured to the same side of the common meridian, the included angle α = θ2 – θ1 i.e. the difference of the bearings. This is true for all quadrants.[fig 4.25 a] If the bearings have been measured to the opposite side of the common meridian, the included angle α = θ1 + θ2 i.e. the sum of the bearings. [fig 4.25 b] If the bearings have been measured to the same side of the different meridians, the included angle α = 180˚ - (θ1 + θ2) i.e. the difference of 180 and the sum of the bearings. [fig 4.25 c] If the bearings have been measured to the opposite side of the different meridians, the included angle α = 180˚ - (θ1 - θ2) i.e. the difference of 180 and the difference of the bearings. [fig 4.25 d] • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  15. SURVEYING – I(CE- 128)

  16. SURVEYING – I(CE- 128) • Calculation of bearings from included angles : • Knowing the bearing of the line and the included angles between the successive lines, the bearing of the remaining lines, may be calculated as under: • Let the observed bearing of the line AB be θ1 (given) • α , β , γ , δ , φ ………etc, the included angles measured clockwise between adjacent lines. θ2,θ3,θ4,θ5, etc , the bearing of successive lines. • The bearing of BC = θ2 = θ1 + α -180˚ • The bearing of CD = θ3 = θ2 + β - 180˚ • The bearing of DE = θ4 = θ3 + γ - 180˚ • The bearing of EF = θ5 = θ4 + δ + 180˚ • The bearing of FG = θ6 = θ5 + φ - 540˚ • From fig.4.26, it is evident that each of (θ1 + α), (θ2 + β) and (θ3 + γ) is more than 180˚; • (θ4 + δ) is less than 180˚ and (θ6 + φ ) is greater than 540˚. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  17. SURVEYING – I(CE- 128) Hence, in order to calculate the bearing of the next line, the following statements may be made: “Add the included angle measured clockwise to the bearing of the previous line. If the sum is: more than 180˚,deduct 180˚ more than 540˚,deduct 540˚ less than 180˚,add 180˚,to get the bearing of the next line.” • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  18. SURVEYING – I(CE- 128) • TRAVERSE EXAMPLE: Horizontal Control • Horizontal control is required for initial survey work (detail surveys) and for setting out. • The simplest form is a TRAVERSE - used to find out the co-ordinates of • CONTROL or TRAVERSE STATIONS. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  19. N (mag) A E D B Grass C SURVEYING – I(CE- 128) • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  20. Horizontal Control • Horizontal control is required for initial survey work (detail surveys) and for setting out. • The simplest form is a TRAVERSE - used to find out the co-ordinates of • CONTROL or TRAVERSE STATIONS. SURVEYING – I(CE- 128) • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  21. A F B A C E B D E F G C D SURVEYING – I(CE- 128) • There are two types : - a) POLYGON or LOOP TRAVERSE b) LINK TRAVERSE • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  22. A X B F A C E B D E F G C Y D SURVEYING – I(CE- 128) a) is obviously closed b) must start and finish at points whose co-ordinates are known, and must also start and finish with angle observations to other known points. • Working in the direction A to B to C etc is the FORWARD DIRECTION • This gives two possible angles at each station. LEFT HAND ANGLES RIGHT HAND ANGLES

  23. A F Consider the POLYGON traverse B E C D 2 * Accuracy of Theodolite * (No. of Angles) SURVEYING – I(CE- 128) The L.H.Angles are also the INTERNAL ANGLES Using a theodolite we can measure all the internal angles. Σ (Internal Angles) = ( 2 N - 4 ) * 900 The difference between Σ Measured Angles and Σ Internal Angles is the Angular Misclosure (or 3) Maximum Angular Misclosure = (Rule of thumb)

  24. ΘAF A F ΘBA ΘAB Angle FAB (LH angle) B ΘBC C LH angle ABC BACK BEARING ( ) FORWARD BEARING ( ) ΘAB ΘBA = 1800 SURVEYING – I(CE- 128) Standing at A looking towards F - looking BACK Hence ΘAF is known as a BACK BEARING Standing at A looking towards B - looking FORWARD HenceΘAB is known as a FORWARD BEARING BACK BEARING (ΘAF ) + L.H.ANGLE (<FAB) = NEXT FORWARD BEARING (ΘAB) Reminder: every line has two bearings

  25. - 3” - 3” - 3” - 3” SURVEYING – I(CE- 128) Traverse Example 12” / 4 = 3” Observations, using a Zeiss O15B, 6” Theodolite, were taken in the field for an anti - clockwise polygon traverse, A, B, C, D. Traverse Station Observed Clockwise Horizontal Angle 0 ‘ “ C N B A 132 15 30 A B 126 12 54 C 69 41 18 D D 31 50 30 Σ (Internal Angles) = 360 00 12 Line Horizontal Distance Σ (Internal Angles) should be (2N-4)*90 = 360 00 00 Allowable = 3 * 6” * N= 36” AB 638.57 OK - Therefore distribute error BC 1576.20 The bearing of line AB is to be assumed to be 00 and the co-ordinates of station A are (3000.00 mE ; 4000.00 mN) CD 3824.10 DA 3133.72

  26. LINE BACK BEARING WHOLE HORIZONTAL + + CIRCLE DISTANCE ADJUSTED LEFT STATION BEARING HAND ANGLE = = D LINE q FORWARD Check 1 BEARING 638.57 B 126 12 51 1576.20 BC 306 12 51 CB C 69 41 15 CD 195 54 06 3824.10 DC D 31 50 27 47 44 33 DA 3133.72 Use Distance and Bearing to go from POLAR to RECTANGULAR to get Delta E and Delta N values. 227 44 33 AD 132 15 27 A +or- 1800 AB 00 00 00 00 00 00 BA 180 00 00 +or- 1800 306 12 51 126 12 51 +or- 1800 195 54 06 15 54 06 47 44 33 227 44 33 AD

  27. +638.570 0.000 +931.227 -1271.701 -3677.764 -1047.754 +2107.313 +2319.361 -0.094 -0.654 SURVEYING – I(CE- 128) CO-ORDINATE DIFFERENCES WHOLE HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING D q D E D N 638.57 00 00 00 1576.10 306 12 51 3824.10 195 54 06 3133.72 47 44 33 • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  28. D EBC D NBC D NAB D NCD D NDA D ECD D EDA SURVEYING – I(CE- 128) C =+931.227m B =+638.570m =-3677.764m A =+2107.313m D

  29. e SURVEYING – I(CE- 128) C e = (eE2 + eN2 ) e is the LINEAR MISCLOSURE B eE A eN A’ D

  30. +638.570 0.000 +931.227 -1271.701 -3677.764 -1047.754 +2107.313 +2319.361 CO-ORDINATE DIFFERENCES WHOLE HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING D q D E D N 638.57 00 00 00 1576.10 306 12 51 3824.10 195 54 06 3133.72 47 44 33 9172.59 -0.094 -0.654 G G eE eN e =  (eE2 + eN2) =  (0.0942 + 0.6542) = 0.661m Fractional Linear Misclosure (FLM) = 1 in GD / e = 1 in (9172.59 / 0.661) = 1 in 13500 [To the nearest 500 lower value]

  31. Check 2 SURVEYING – I(CE- 128) Acceptable FLM values :- • 1 in 5000 for most engineering surveys • 1 in 10000 for control for large projects • 1 in 20000 for major works and monitoring for • structural deformation etc. • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

  32. +638.570 0.000 +931.227 -1271.701 -3677.764 -1047.754 +2107.313 +2319.361 CO-ORDINATE DIFFERENCES WHOLE HORIZONTAL CIRCLE DISTANCE CALCULATED BEARING D q D E D N 638.57 00 00 00 1576.10 306 12 51 3824.10 195 54 06 3133.72 47 44 33 9172.59 -0.094 -0.654 eE eN e =  (eE2 + eN2) =  (0.0942 + 0.6542) = 0.661m Fractional Linear Misclosure (FLM) = 1 in GD / e = 1 in (9172.59 / 0.661) = 1 in 13500 If not acceptable i.e. 1 in 13500 then we have an error in fieldwork

  33. E D N values D and b) Transit Method - proportional to SURVEYING – I(CE- 128) If the misclosure is acceptable then distribute it by: - a) Bowditch Method - proportional to line distances c) Numerous other methods including Least Squares Adjustments • NUST Institute of Civil Engineering/Engr. Ahmed Rasheed Mirza

More Related