1 / 6

Understanding Quadratic Functions: Forms and Examples

This guide introduces the three forms of a quadratic equation: Standard Form (y = ax² + bx + c), Vertex Form (y = a(x-h)² + k), and Intercept Form (y = a(x-p)(x-q)). It provides examples of how to write quadratic functions using these forms, including a vertex problem and intercepts problem. Detailed explanation on how to solve for coefficients is included. The document serves as a study aid for mastering quadratic functions and their applications in different contexts.

stacie
Télécharger la présentation

Understanding Quadratic Functions: Forms and Examples

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5.8 Modeling with Quadratic Functions p. 306

  2. Remember the 3 forms of a quadratic equation! • Standard Form • y=ax2+bx+c • Vertex Form • y=a(x-h)2+k • Intercepts Form • y=a(x-p)(x-q)

  3. Example: Write a quadraticfunction for a parabola with a vertex of (-2,1) that passes through the point (1,-1). • Since you know the vertex, use vertex form! y=a(x-h)2+k • Plug the vertex in for (h,k) and the other point in for (x,y). Then, solve for a. • -1=a(1-(-2))2+1 -1=a(3)2+1 -2=9a Now plug in a, h, & k!

  4. Example: Write a quadratic function in intercept form for a parabola with x-intercepts (1,0) & (4,0) that passes through the point (2,-6). • Intercept Form: y=a(x-p)(x-q) • Plug the intercepts in for p & q and the point in for x & y. • -6=a(2-1)(2-4) -6=a(1)(-2) -6=-2a 3=a Now plug in a, p, & q! y=3(x-1)(x-4)

  5. Example: Write a quadratic equation in standard form whose graph passes through the points (-3,-4), (-1,0), & (9,-10). • Standard Form: ax2+bx+c=y • Since you are given three points that could be plugged in for x & y, write three eqns. with three variables (a,b,& c), then solve using your method of choice such as linear combo, inverse matrices, or Cramer’s rule. 1. a(-3)2+b(-3)+c=-4 2. a(-1)2+b(-1)+c=0 3. a(9)2+b(9)+c=-10 A-1 * B = X =a =b =c

  6. Assignment

More Related