understanding your marvelous mysterious magical soil building healthy soil and healthy bodies n.
Skip this Video
Loading SlideShow in 5 Seconds..
Understanding your marvelous, mysterious, magical soil: Building healthy soil and healthy bodies PowerPoint Presentation
Download Presentation
Understanding your marvelous, mysterious, magical soil: Building healthy soil and healthy bodies

Understanding your marvelous, mysterious, magical soil: Building healthy soil and healthy bodies

116 Vues Download Presentation
Télécharger la présentation

Understanding your marvelous, mysterious, magical soil: Building healthy soil and healthy bodies

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Understanding your marvelous, mysterious, magical soil: Building healthy soil and healthy bodies Presented by Roger Short of Short’s Farm for the Jefferson County Conservation District March 20, 2014

  2. Who is Roger Short and what is Magical Soil anyway?

  3. Paradigm ShiftA dramatic change in methodology or practice. It often refers to a major change in thinking and planning, which ultimately changes the way projects are implemented. Triggers: Mentors: Mother Earth Magazine Elaine Ingham Food Inc Jon Frank Dr. Jubb Dr. Jubb Thom Graham Alan Nation

  4. Why I care about Soil “Whenever I look at society, there is one aspect of it that really makes my blood boil! It just sets me on fire. No, it isn’t the messed up political system, it isn’t heartless corporations hell-bent to make a profit, and no, it isn’t our fiat currency that may soon take a tumble. Actually it is a lot closer to home. When I look around my community and see people dying from cancer and other degenerative diseases I get angry-really angry. This shouldn’t be happening!” Jon Frank

  5. The Goal is: Healthy Soil = Healthy Plants = Healthy Animals & People = fewer additives (drugs, chemicals, doctors) “Pay the farmer now or the doctor later.” 4 H Motto: “To make the best better” “You are what you eat; your health can only be as good as the food you eat, and the food you eat can only be as healthy as the soil in which it is grown.”

  6. How does Nature do it? Nature creates healthy soil by a circular, or perhaps spiral, process of rock being decomposed by weather, friction, and the intrepid organisms that break soil down into mineral components, plants growing and contributing their roots and bodies, animals eating the plants and then contributing their waste and bodies, organisms decomposing and breaking soil down, and on and on. On those minerals and broken apart rocks, pioneer plants set down their roots and further break apart the rocks. They drop their leaves. The roots decompose and attract fungi and organisms that colonize the developing underground areas. The fungal and biota bodies excrete wastes and sugars and acids and then die and become food for other organisms. And pretty soon you have soil and ever more complex webs of organisms, fungi, plants and chemical relationships. This is often referred to as the Carbon Cycle.

  7. All of the micro and macro organisms play a critical role in the Carbon Cycle • The all-important Carbon Cycle: the continuous transformation of organic and inorganic carbon compounds by plants, micro and macro organisms between the soil, plants and the atmosphere.

  8. The Soil Food Web • Soil organisms use soil organic matter as food. They break it down into nutrients in a form that plants can use. This process is called mineralization. • The waste products from soil organisms are also soil organic matter. • All this organic matter increases the capacity to store water and carbon from the atmosphere. • The energy for ALL food webs is generated by photosynthesizers (plants, lichens, moss, photosynthetic bacteria and algae). Everything depends upon them! • Soil that is alive and healthy includes a wide variety of microorganisms such as bacteria, viruses, fungi, protozoa and algae. • Alive soil also contains plant roots, insects, earthworms, moles, mice, gophers and other larger animals that spend a portion of their life in the soil. • This living portion of the soil represents about 5 % of total soil organic matter. • Soil organisms follow seasonal as well as daily patterns with some dormant or barely active at certain times of the day or year. During the cold, wet months of the Pacific Northwest, many of our soil organisms are barely active. This is why compost tends to take longer to decompose in the winter months.

  9. Importance of microorganisms • Decomposition: Microbes break down large and complex organic molecules into smaller, simpler molecules like carbon dioxide or water which then become more readily available for plant growth. • Root Growth: Mutual and adaptive relationships between plant roots and soil microbes aid in making essential nutrients available for plant growth. Mycorrhizal fungi establish an organ on plant roots that allows for a mutualistic exchange of energy between the plant and the microbe that utilizes the unique nutrient capturing abilities of each and allows each to thrive in environments that might otherwise be impossible or difficult. • Biocontrol: Soil microbes play a key role in breaking down harmful substances and managing various pests detrimental to plant health. Some soil microbes are scavengers that search for and degrade harmful substances into simple, non-toxic substances. (This may be what is happening in rain gardens!) Some soil microbes are sold as pest management agents within an Integrated Pest Management plan. • Replenish and make available nutrients: Microbes are able to process complex organic molecules and make them available to plant growth. Molecules like phosphorus and nitrogen are required for plant growth; sometimes nutrients can become “bound up” through chemical processes. They might be in the soil but the plant can’t access them. Mycorrhizae, rhizobium and other microorganisms kick off chemical processes which free up the nutrients so plants can use them to grow and become healthier.

  10. This shows how microorganisms benefit plant growth.

  11. Mycorrhizae: A microorganism superstar • Mycorrhizae is a symbiotic association between a fungus and the roots of a vascular plant. (Wikipedia) • In a mycorrhizal association the fungus colonizes the host plant’s roots and begins a sugar-water/mineral exchange with that plant that can often mean the difference between life and death for that plant. • The hyphae (fungal roots basically) absorb water and minerals by producing a network that covers the roots of plants and increases the effective surface area of the root system, meaning the roots can absorb more water and minerals from the soil. The fungi also release nutrients into the soil. • In return, the plant provides the fungi with the products of photosynthesis, like sugars. • The seeds of some plants cannot germinate without a mycorrhizal fungi present and many trees can’t survive without it.

  12. Another micro super star: Rhizobium Rhizobium is a soil bacteria that fixes nitrogen. This means it takes nitrogen out of the air and makes it available to plants through root nodules by converting atmospheric nitrogen to ammonia. The plant provides the bacteria with the products of photosynthesis. Legumes are famous for their relationship with Rhizobium. Nitrogen from the air gets transformed into ammonia which then acts as a natural fertilizer for the beans. It is best NOT to add nitrogen to bean crops as this interferes with the Rhizobium activities. Wise use of Rhizobium allows us to reduce the application of nitrogenous fertilizers, often a problem for water quality in the form of run off from agricultural land.

  13. So, if Nature does such a great job, why do we need to get involved? • We have permanently altered most of our landscape, including much of our prime agricultural lands by scraping off a large percentage of the valuable top soil (the top 2-8 inches of the earth’s surface) and building impermeable surfaces on top of what is left. According to the U.S. Department of Agriculture, the United States loses almost 3 tons of topsoil per acre per year. • Conventional farming has traditionally utilized synthetic fertilizers that exhaust the soil and negatively affect soil biota. • Overtillage has destroyed the structure of soils and adversely affected soils ability to hold water and nutrients. • Agriculture tends to disrupt the Carbon cycle by removing many of the inputs such as tree limbs, leaves, dead animals and insects, grass roots, etc. • Therefore, we need to try to replace the inputs in a manner that is as close to how nature would do it as possible for the long term health and viability of our soils.

  14. How do we know if we have healthy soil? • Observation is the first step! • How are your plants growing? • Are they vigorous? • Are they attaining their desired state of flower, fruit, seed, etc.? • Does the color seem appropriate? • Do they withstand periods of dryness? • Do they withstand predation? • Do you have plentiful insect, earthworm, bird, amphibian and reptile populations on your land? • But, the only way to know for sure what will benefit your soil is to carefully sample and analyze the soil and compost as well as the plants themselves for their nutrient content and nutrient ratios. • Soil testing • Plant tissue testing • Brix testing

  15. The confusing world of soil testing

  16. And another take on it…

  17. Who do you believe or listen to? • This is a difficult question to answer, in any context. Your local Conservation District or WSU Extension can offer guidance on interpreting your soil test results and how to build your soil back to a state of something approximating optimal health. • Like all of Life, soil health is a dynamic process. You are never going to get “there” and stay “there”. Nature is constantly in flux, constantly seeking, finding and losing its balance. • Your own observations are critical. You know your land better than anyone. • Go “beyond organic”. We know, fairly conclusively, that synthetic fertilizers, fungicides and pesticides destroy the very systems that create and maintain soil health. Even organic fertilizers can miss the point that truly healthy soil needs to be ALIVE!

  18. Methods for improving and balancing your soil. • After a soil test, adding compost should be your first step. For all of the reasons listed earlier, compost brings life to your dirt. Compost is teeming with all the micro and macro organisms critical to soil and plant health. • Trace minerals are also key in creating soil health. Some organic sources of trace minerals (generally slow release) include: • Green sand • Glacial rock dust • Soft Rock Phosphate • Kelp meal • Oyster shell calcium flour • Bat guano • Do keep in mind that too much of a good thing is…well, too much.

  19. Why chemical fertilizers, fungicides and pesticides are deadly to soil health. Chemical and Synthetic Fertilizers Pesticides and Fungicides Often petroleum based. It is possible they contribute to cancers and birth defects, both in humans and other animals. Tend to create “super bugs” as the short life cycle of insects leads to increased resistance to pesticides. Kill both “good” and “bad” insects, including vital pollinators. Fungicides destroy the critical symbiotic connections between plants and fungi. • Short term solutions for a long term process. They spike fertility in the soil and thenresult in an overall depletion in “energy”. The more you use, the more you need to get the same results. • Synthetic; they provide isolated nutrientsand can disrupt the balance of chemistry/nutrition in the soil causing nutrients to become locked up and unavailable to plants. • Primarily salt basedwhich can burn plants or create a need for more intensive watering. • Water soluble and leach out of the soil. They have to be reapplied often, and can leach into nearby water bodies or high water tables. Nitrates and phosphates are highly toxic to aquatic life and can be dangerous to humans as well. • Negatively impact soil biota.

  20. Some organic amendments to build your soil health: • Compost • Calcium products • Gypsum • Ag Lime • Dolomite • Hydrated Lime • Phosphorus • Potassium • Magnesium • Sulfur • Nitrogen • Energy: Probably the most forgotten nutrient

  21. Some organic fertilizer comparisons

  22. Magical Soil • Semiahmoomuck • 1. Diatoms 2. Silica 3. Dr. Jubb • Compost • Sand • Image of diatoms

  23. Do it yourself composting

  24. Agricultural scale composting X

  25. Things you need to know that your parents never told you, like…How to convert ppm to pounds per acre and more! • General • lb P2O5 x 0.44 = lb P • lb P x 2.29 = lb P2O5 • lb K2O x 0.83 = lb K • lb K x 1.2 = lb K2O • For each 7” of soil depth where nitrate N is determined, multiply ppm of available nitriate by 2 to obtain pound per acre of available nitrate. • Soil • Parts per million (ppm) x 2 = lb/acre • 5 lb P2O5 increases soil P test value by 1 ppm • 1.75 lb K2O increases soil K test value by 1 ppm • Pounds of soil in a 5 gallon bucket x 40 = pounds per yard (30# x 40 = 1200# per yard) • 5 gallons x 40 = I cubic yard (200 cu feet) • 7.5 gallons = 1 cubic foot • Manure - General • Typical density of swine manure = 62 pounds per cubic foot Tons x 32.26 = cu ftCu ft x 0.0310 = tons Tons x 242 = gallons Gallons x 0.00414 = tons • Total available N (TAN) or Plant available N (PAN) = NH4 + -N + mineralized organic N • About 35% of the organic N is mineralized to inorganic N in year it is applied • Manure - General • Typical density of swine manure = 62 pounds per cubic foot Tons x 32.26 = cu ftCu ft x 0.0310 = tons Tons x 242 = gallons Gallons x 0.00414 = tons • Total available N (TAN) or Plant available N (PAN) = NH4 + -N + mineralized organic N • About 35% of the organic N is mineralized to inorganic N in year it is applied • Liquid Manure • ppm / 10,000 = % • Lb/1000 gal= ppm/120 • lb/1000-gallons / 83 = % • ppm P x 0.019 = lbs P2O5/1000 gallons • ppm K/100 = K2O/1000 gallons • % P x 192 = lb P2O5/1000 gallons • % K x 100 = lbs K2O/1000 gallons • Solid Manure • lb/ton / 20 = % • Lb/ton = ppm/500 • ppm P X 0.0046 = lb P2O5/ton • ppm K x 0.0024 = lb K2O/ton • % P x 46 =lb P2O5/ton • % K x 24 = lb K2O/ton

  26. Nutrient Dense Foods • One of the truest measures of soil health is the plant life that it nurtures and produces. • Our goal is to cultivate “nutrient dense foods”, whether that be forage for animals or produce for humans. • Nutrient dense foods have a high nutrient/calorie ratio. (More nutrients than calories.) • They supply a significant amount of energy, new tissue growth and repair and help regulate metabolism per caloric value. More bang for your buck. • We can measure nutrient density with a measurement called Brix. • Used on plant sap, it is a measurement of the carbohydrate level in plant juices. • The measurement is taken on the ripe part of a plant. • High Brix foods have • Greater carbohydrate levels • Greater mineral density • Taste Better • Are insect and disease resistant • Animals instinctively prefer them so you will find the chickens going after them first.

  27. Brix chart

  28. Geology plays a role

  29. Resources • • • Sign up for Jon Frank’s newsletter at International labs at above address • • Agronomy handbook found at under publications • for high density foods • • Master Gardeners • Symphony of the Soil • USDA & Soil and Water Conservation Society “Soil Biology Primer” • Secrets of the Soil by Peter Tompkins and Christopher Bird • Teaming with Microbes by Jeff Lowenfels & Wayne Lewis • Citizens for Local Food movement in Port Townsend • Heather Graham has developed a resource library available to the public as part of CLF.

  30. Questions?