1 / 30

Bayesian methods for combining climate forecasts

Learn how combining empirical and dynamical climate forecasts using Bayesian methods can improve accuracy and uncertainty estimates, with a focus on El Nino predictions and forecast statistics.

Télécharger la présentation

Bayesian methods for combining climate forecasts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bayesian methods for combining climate forecasts David B. Stephenson, Sergio Pezzulli, Caio Coelho (*) Francisco J. Doblas-Reyes, Magdalena Balmaseda • Introduction • Conditioning and Bayes’ theorem • Results (*): Department of Meteorology, The University of Reading

  2. 1. Introduction

  3. Motivation • Empirical versus dynamical forecasts? • Why not combine both types of forecast in order to use ALL possible information? • Ensemble forecasts + probability model  probability forecasts • Use sample of ensemble forecasts to update historical (prior) probability information (post-forecast assimilation)

  4. El Nino – Southern Oscillation <1982/3 <1997/8 • Big El Nino events in 1982/3 and 1997/8 • La Nina/normal conditions since 1998 • El Nino event predicted for end of 2002 Jan 1997 Nov 1997 Mar 1998

  5. Recent sea temperature anomalies 16 Sep 2002 • ENSO forecasts from ECMWF, Reading Sep 2002-Feb 2003

  6. DATA Sea Surface Temperatures (SST) “at” location Nino 3.4 ( 5S - 5N , 170W - 120W ) December means of Nino 3.4: • Reynolds SST : 1950-2001 • ECMWF DEMETER ensemble forecasts: 1987-1999

  7. Some notation … • Observed Dec Nino-3.4 • Ensemble mean forecast • Ensemble standard deviation • Normal (Gaussian) probability forecasts:

  8. 2. Conditioning and Bayes theorem

  9. Probability density functions (distributions) Bi-dimensional or Joint distribution of X & Y Uni-dimensional

  10. Marginal distributions p(x*) = p(x*, y) dy Y x* X

  11. Conditional distributions p(x | y*) = p(x, y*) /p(y*) y*

  12. Conditional-chain Rule p(y) p(x|y) = p(x , y) =p(x) p(y|x) Bayes Theorem p(x|y) = p(x , y) / p(y)  p(x , y) =p(x) p(y|x)

  13. Thomas Bayes 1701-1761 An Essay towards Solving a Problem In the Doctrine of Chances. Philosophical Transactions of the Royal Society, 1763 The process of belief revision on any event W (the weather) consists in updating the probability of W when new information F (the forecast) becomes available p(W | F)p(W)p(F | W) p(W) = N( , 2) p(F | W) = N( + W , V)

  14. The Likelihood Model

  15. 3. Forecast results

  16. Empirical forecasts

  17. Coupled model forecasts  Note: many forecasts outside the 95% prediction interval!

  18. Combined forecast  Note: more forecasts within the 95% prediction interval!

  19. Mean likelihood model estimates • ensemble forecasts too cold on average (alpha>0) • ensemble forecast anomalies too small (beta<1) • ensemble forecast spread underestimates forecast uncertainty

  20. Forecast statistics and skill scores Note that the combined forecast has: • A large increase in MAE (and MSE) forecast skill • A realistic uncertainty estimate

  21. Conclusions and future directions • Bayesian combination can substantially improve the skill and uncertainty estimates of ENSO probability forecasts • Methodology will now be extended to deal with multi-model DEMETER forecasts • Similar approach could be developed to provide better probability forecasts at medium-range (Issues: non-normality, more forecasts, lagged priors, etc.).

  22. Coupled Model Ensemble Forecast

  23. Ensemble Forecast and Bias Correction Bias Corrected

  24. Climatology

  25. Climatology + Ensemble

  26. Coupled-Model Bias-Corrected Ensemble Forecast Climatology + Ensemble

  27. Coupled-Model Bias-Corrected Ensemble Forecast Empirical Regression Model + Ensemble

More Related