1 / 28

The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR)

The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) . Peter Senger. Outline:  FAIR: future center for nuclear and hadron physics in Europe  Compressed Baryonic Matter: physics and observables  Technical challenges, time lines .

taariq
Télécharger la présentation

The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Peter Senger Outline:  FAIR: future center for nuclear and hadron physics in Europe Compressed Baryonic Matter: physics and observables Technical challenges, time lines ...

  2. The FAIR layout Key features: Generation of intense, high-quality secondary beams of rare isotopes and antiprotons. Two rings: simultaneous beams. SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Cooled antiproton beams up to 15 GeV: Charmonium Spectroscopy, Search for glueballs and hybrids, Hypernuclear physics, ... Ion and Laser Induced Plasmas: High Energy Density in Matter Structure of Nuclei far from Stability Compressed Baryonic Matter

  3. States of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon plasma (pion production) Neutron stars Early universe

  4. Exploring the phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI SIS300: moderate temperature, high baryondensity

  5. Mapping the QCD phase diagram with heavy-ion collisions The critical end point Ejiri et al. Fodor-Katz 1st order transition Cross over • CBM physics: • exploring the high density region • of the QCD phase diagram. • Search for • restoration of chiral symmetry • partonic matter at large μB • critical endpoint Dense baryon- dominated matter Meson- dominated matter

  6. B  3-80 , T  130 MeV Fundamental questions:  Equation-of-state at high densities: supernova dynamics, stability of neutron stars In-medium hadron properties: chiral symmetry restoration, origin of hadron masses?  deconfinement

  7. Diagnostic probes

  8. CBM physics topics and observables 1. In-medium modifications of hadrons onset of chiral symmetry restorationat high B measure: , ,   e+e- open charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, , , ,  3. Indications for deconfinement at high B anomalous charmonium suppression ? measure:J/, D softening of EOS measureflow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ?

  9. n p p    ++ r e+ K e- Looking into the fireball … … using penetrating probes: short-lived vector mesonsdecaying into electron-positron pairs

  10. Invariant mass of electron-positron pairsfrom Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017 ≈185 pairs!

  11. Experimental situation : Strangeness production in central Au+Au and Pb+Pb collisions Experimental situation : Strangeness enhancement ? New results from NA49 (CERN Courier Oct. 2003) SIS 100 300 SIS 100 300 Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902

  12. J/ experiments: a count rate estimate 10 50 120 210 Elab [GeV] central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb J/ multiplicity 1.5·10-5 1·10-3 beam intensity 1·109/s 2·107/s interactions 1·107/s (1%) 2·106/s (10%) central collisions 1·106/s 2·105/s J/ rate 15/s 200/s 6% J/e+e- (+-) 0.9/s 12/s spill fraction 0.8 0.25 acceptance 0.25  0.1 J/ measured 0.17/s  0.3/s  1·105/week 1.8·105/week

  13. Charmed mesons D meson production in pN collisions Some hadronic decay modes D(c = 317 m): D+  K0+(2.90.26%) D+  K-++ (9  0.6%) D0(c = 124.4 m): D0  K-+ (3.9  0.09%) D0  K-+ + - (7.6  0.4%) Measure displaced vertex with resolution of  30 μm !

  14. Experimental challenges Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400 - 400 + 44 K+ 13 K-  107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target)  determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons

  15. The CBM Experiment  Radiation hard Silicon pixel/strip detectorsin a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 105  Hadron identification: RPC, RICH  Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL)  High speed data acquisition and trigger system

  16. CBM Collaboration : 39 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ. , Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

  17. FAIR milestones FAIR cost (M€) Total: 675 Buildings: 225.5 SIS100: 70.1 SIS200: 39.6 Coll. Ring: 45.0 NESR: 40.0 HESR: 45.0 e-ring: 15.0 Beamlines: 21.0 Cryo, etc: 44.1 SFRS: 40.7 CBM: 27.0 AP: 8.7 Plasma phys.: 8.0 p-linac: 10.0 PANDA: 28.4 pbar targ.: 6.9 Oct. 2001 : Submission of the Conceptual Design Report Nov. 2002: Positive evaluation report of the German science council Feb. 2003: Project approved by the German federal government (170 M€ foreign contributions requested) Jan. 2004: Letters of intent submitted Feb. 2004: 1. Meeting of Internat. Steering Committee (12 nations) June 2004: Evaluation of the LOI,s by PACs Jan 2005: Submission of Technical Reports

  18. Concept for staged Construction of FAIR SIS18 Upgrade 70 MW Connection Proton-Linac TDM# General Planning 2,7x1011 /s 238U28+ (200 MeV/u) 5x1012 protons per puls I Civil Construction 1 SIS100/200 Tunnel, SIS Injection+Extraction+Transfer SIS100 Transfer Line SIS18-SIS100 High Energy Beam Lines Transfer Buildings/Line Super-FRS, Auxiliary Bldgs., Transfer Tunnel to SIS18, Building APT,Super-FRS, CR-Complex RIB High+Low Energy Branch, II Civil Construction 2 RIB Prod.-Target, Super-FRS RIB High+Low Energy Branch Antiproton Prod.-Target CR-Complex 1x1011/s 238U28+ (0.4-2.7GeV/u) ->RIB (50% duty cycle) 2.5x1013 p (1-30 GeV) 3-30 GeV pbar->fixed target 10.7 GeV/u 238U -> HADES* III Civil Construction 3 CBM-Cave, Pbar-Cave, Reinjection SIS100 HESR & 4 MV e- –Cooling NESR IV HESR ( ground level), NESR, AP-cave, e-A Collider, PP-cave Civil Construction 4 SIS200* 8 MV e- –Cooling e-A Collider 1x1012/s 238U28+ 100% duty cycle pbar cooled p (1-90 GeV) 35 GeV/u 238U92+ NESR physics plasma physics V #Construction Tunnel Drilling Machine Civil Construction Experiment Potential Civil Construction Production and Installation *SIS200 installation during SIS100 shut down

  19. Design of a Silicon Pixel detector Silicon Tracking System: 7 planar layers of pixels/strips. Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target • Design goals: • low materal budget: d < 200 μm • single hit resolution < 20 μm • radiation hard (dose 1015 neq/cm2) • fast read out • Roadmap: • R&D on Monolithic Active Pixel Sensors (MAPS) • pitch 20 μm • thickness below 100 μm • single hit resolution :  3 μm • Problem: radiation hardness and readout speed • Fallback solution: Hybrid detectors MIMOSA IV IReS / LEPSI Strasbourg

  20. Experimental conditions Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV: Rates of > 10 kHz/cm2 in large part of detectors !  main thrust of our detector design studies

  21. Design of a high rate RPC • Design goals: • Time resolution ≤ 80 ps • High rate capability up to 25 kHz/cm2 • Efficiency > 95 % • Large area  150 m2 • Long term stability Prototype test: detector with plastic electrodes (resistivity 109 Ohm cm.) P. Fonte, Coimbra

  22. “Trajectories” (3 fluid hydro) Ivanov & Toneev Hadron gas EOS Calculations reproduce freeze-out conditions 30 AGeV trajectory close to the critical endpoint

  23. C. R. Allton et al, hep-lat 0305007 B  6 0 B  0.3 0 Lattice QCD : maximal baryon number density fluctuations at TC for q = TC (B  500 MeV) Mapping the QCD phase diagram with heavy-ion collisions P. Braun-Munzinger SIS300 baryon density: B  4 ( mT/2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

  24. Design of a fast TRD • Design goals: • e/π discrimination of > 100 (p > 1 GeV/c) • High rate capability up to 150 kHz/cm2 • Position resolution of about 200 μm • Large area ( 500 m2, 9 layers) • Roadmap: • Outer part: ALICE TRD • Inner part: • GEM/MICROMEGAS readout chambers • Straw tube TRT (ATLAS) • Fast read-out electronics

  25. CBM R&D working packages Feasibility, Simulations Design & construction of detectors Data Acquis., Analysis GEANT4: GSI Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw ,ω, e+e- Univ. Krakow JINR-LHE Dubna D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg J/ψ e+e- INR Moscow Analysis GSI Darmstadt, Heidelberg Univ, ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RPC-TOF LIP Coimbra, Univ. Santiago de Com., Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow RICH IHEP Protvino GSI Darmstadt Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna Magnet JINR-LHE, Dubna GSI Darmstadt

  26. B  6 0 B  0.3 0 Mapping the QCD phase diagram with heavy-ion collisions P. Braun-Munzinger SIS300 Net baryon density: B  4 ( mT/2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

More Related