1 / 24

Strangeness and charm of Compressed Baryonic Matter – The CBM Experiment at FAIR

Strangeness and charm of Compressed Baryonic Matter – The CBM Experiment at FAIR. Peter Senger. Outline:  Exploring high baryon densities  Experimental observables  A second generation experiment. The future Facility for Antiproton an Ion Research (FAIR). SIS 100 Tm SIS 300 Tm

larya
Télécharger la présentation

Strangeness and charm of Compressed Baryonic Matter – The CBM Experiment at FAIR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Strangeness and charm of Compressed Baryonic Matter – The CBM Experiment at FAIR Peter Senger Outline:  Exploring high baryon densities Experimental observables A second generation experiment

  2. The future Facility for Antiproton an Ion Research (FAIR) SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Cooled antiproton beam: Hadron Spectroscopy Ion and Laser Induced Plasmas: High Energy Density in Matter Structure of Nuclei far from Stability Compressed Baryonic Matter

  3. States of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon plasma (pion production) “Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter? Deconfinement at high baryon densities ? Neutron stars Early universe

  4. Mapping the QCD phase diagram with heavy-ion collisions C. R. Allton et al, hep-lat 0305007 Lattice QCD : maximal baryon number density fluctuations at TC for q = TC SIS300 net baryon density: B  4 ( mT/2h2c2)3/2 x [exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons Lattice QCD calculations: Fedor & Katz, Ejiri et al.

  5. “Trajectories” (3 fluid hydro) Ivanov & Toneev Hadron gas EOS Calculations reproduce freeze-out conditions 30 AGeV trajectory close to the critical endpoint

  6. Strangeness production in central Au+Au and Pb+Pb collisions Experimental situation : Strangeness enhancement ? SIS 100 300 SIS 100 300 Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902

  7. Diagnostic probes U+U 23 AGeV

  8. CBM physics topics and observables  In-medium modifications of hadrons onset of chiral symmetry restorationat high B measure: , ,   e+e- open charm (D mesons)  Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, , , ,   Indications for deconfinement at high B anomalous charmonium suppression ? measure:J/, D  Critical point event-by-event fluctuations  Color superconductivity precursor effects ?

  9. Electron-positron pairsfrom Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017 ≈185 pairs!

  10. J/ experiments: a count rate estimate 10 50 120 210 Elab [GeV] central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb J/ multiplicity 1.5·10-5 1·10-3 beam intensity 1·109/s 2·107/s interactions 1·107/s (1%) 2·106/s (10%) central collisions 1·106/s 2·105/s J/ rate 15/s 200/s 6% J/e+e- (+-) 0.9/s 12/s spill fraction 0.8 0.25 acceptance 0.25  0.1 J/ measured 0.17/s  0.3/s  1·105/week 1.8·105/week

  11. Open charm D meson production in pN collisions Some hadronic decay modes D(c = 317 m): D+  K0+(2.90.26%) D+  K-++ (9  0.6%) D0(c = 124.4 m): D0  K-+ (3.9  0.09%) D0  K-+ + - (7.6  0.4%) Measure displaced vertex with resolution of  30 μm !

  12. Meson production in central Au+Au collisions W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745 SIS100/ 300 SIS18

  13. Experimental challenges Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400 - 400 + 44 K+ 13 K-  107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target)  determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons

  14. Feasibility studies Event generators: URQMD, PLUTO Transport: GEANT3,4 via VMC  Radiation hard Silicon pixel/strip detectorsin a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 105  Hadron identification: RPC, RICH  Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL)

  15. Hadron identification σTOF = 80 ps Bulk of kaons (protons) can well be identified with σTOF = 80 – 100 ps

  16. Low mass electron-positron pairs Assumptions: ideal tracking and electron identification Background: URQMD Au+Au 25 AGeV + GEANT4 • Cuts: • 1. single electron: • pt > 0.1 GeV/c • d <50 mm • 2. electron pair: • vz < 0.1 cm • vt< 0.01 cm • D < 0.01 cm • Θ> 10° S/B = 0.3 (ρ+) S/B = 1.2 ()

  17. Pion misidentification a)0% b)0.01% c)0.1% d)1%

  18. Feasibility studies: charmonium measurements Electron-positron pair invariant mass Single electron spectra Cuts: pt> 1 GeV/c θ > 10o Assumptions: ideal tracking ideal electron identification, Pion suppression 104 Background: URQMD Au+Au 25 AGeV + GEANT4

  19. Feasibility study : open charm Background suppression by cut on detached vertex :  1000 D0 K-+ (central Au+Au @ 25 AGeV) Assuming <D0> = 10-3 : S/B  1 Similar studies under way for D+  K-+ + , D*±→D0 ± Crucial detector parameters: Material budget of first 2 Silicon stations Single hit resolution

  20. Design of a Silicon Pixel detector Silicon Tracking System: 7 planar layers of pixels/strips. Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target • Design goals: • low materal budget: d < 200 μm • single hit resolution < 20 μm • radiation hard (dose 1015 neq/cm2) • fast read out • Roadmap: • R&D on Monolithic Active Pixel Sensors (MAPS) • pitch 20 μm • thickness below 100 μm • single hit resolution :  3 μm • Problem: radiation hardness and readout speed • Fallback solution: Hybrid detectors MIMOSA IV IReS / LEPSI Strasbourg

  21. Experimental conditions Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV: Rates of > 10 kHz/cm2 in large part of detectors !  main thrust of our detector design studies

  22. CBM R&D working packages FEE, Trigger, DAQ Design & construction of detectors Feasibility studies Simulations Framework GSI ,ω, e+e- Univ. Krakow JINR-LHE Dubna Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster NIPNE Bucharest KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna JINR-LIT Dubna J/ψ e+e- INR Moscow GSI Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw Silicon Strip Moscow State Univ CKBM St. Petersburg KRI St. Petersburg Univ. Obninsk J/ψμ+μ- PNPi St. Petersburg SPU St. Petersburg Ring finder JINR-LIT, Dubna ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RPC-TOF LIP Coimbra, Univ. Santiago Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow RBI Zagreb Univ. Marburg π, K, p ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague RICH IHEP Protvino GSI Darmstadt Λ, Ξ,Ω PNPi St. Petersburg SPU St. Petersburg Magnet JINR-LHE, Dubna GSI Darmstadt

  23. CBM Collaboration : 39 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ. , Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

  24. The experimental program of CBM: Observables: Penetrating probes:, , , J/ (vector mesons) Strangeness:K, , , , , Open charm: Do, D Systematic investigations: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Large integrated luminosity: High beam intensity and duty cycle, Available for several month per year

More Related