200 likes | 231 Vues
This technical report outlines the analysis of instrumental polarization effects on astrometric observations by PRIMA. It discusses the impact of phase errors on astrometry, the operation principle of the Fringe Sensor Unit, and the polarization properties of PRIMA optics. The report also presents a detailed analysis of the fringe detection process, the polarization model of VLTI optics, and the time evolution of optical components. Additionally, it explains the original and modified ABCD algorithms for measuring phase delays in the presence of polarization effects and discusses the challenges in correcting instrumental polarization between beams. The report concludes with insights into the impact of polarization effects on object visibility and astrometric measurements.
E N D
Conceptual Design Review for PRIMA Frosty Leo CW Leo PRIMA Astrometric Observations Polarization effects Technical Report AS-TRE-AOS-15753-0011 Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO) @Lorentz Center, Leiden on 29 Sep., 2004
- OUTLINE - 1. Introduction Why instrumental polarization analysis? 2. Effects of phase error on astrometry Operation principle of the FSU 3. Polarization properties of PRIMA optics Basic concepts of polarization model
Introduction • Why instrumental polarization analysis? • changes phase and amplitude VLT telescope, StS, base line, etc (telescope pointing, separation, station…) • the fringe sensor unit detects a wrong phase delay. • provide an error in astrometry what kind of error? (<p/100?)
What we have to do? • Establish a strategy of analysis • Study the operation principle of FSU • Make a polarization model of VLTI optics Analysis • Fringe detection by FSU • polarization model analysis of VLTI optics • telescope, StS, base line optics • time evolution (as a function of hour angle) • difference between the ref. and the obj.
The Operation Principleof the Fringe Sensor Unit Alenia Co., VLT-TRE-ALS-15740-0004
The original ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Identical polarization S1 = expi(kLopl,1) S2 = expi(kLopl,2) P1 = expi(kLopl,1) P2 = expi(kLopl,2 +p/2) k: wave number (k=2p/l) Lopl,i: optical path length at the station i
The original ABCD Algorithm ABCD signals IA = 2|b|2{1+sin(kLopd)} IB = 2|b|2{1+cos(kLopd)} IC = 2|b|2{1-sin(kLopd)} ID = 2|b|2{1-cos(kLopd)} Visibility V = 1/2(IA+IB+IC+ID)=4|b|2 Phase delay f = kLopd = arctan(IA-IC/IB-ID) Lopd: optical path difference Lopd = Lopl,1 - Lopl,2 The phase delay can be measured with a simple way.
The original ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Different polarization S1 = S1expi(kLopl,1) S2 = S1expi(kLopl,2) P1 = P1expi(kLopl,1) P2 = P1expi(kLopl,2+p/2) k: wave number (k=2p/l) Lopl,i: optical path length at the station i
The original ABCD Algorithm ABCD signals IA = 2|bP1|2{1+sin(kLopd)} IB = 2|bS1|2{1+cos(kLopd)} IC = 2|bP1|2{1-sin(kLopd)} ID = 2|bS1|2{1-cos(kLopd)} Visibility V = 1/2(IA+IB+IC+ID) = 2|b|2(|P1|2+|S1|2) Phase delay f = kLopd = arctan(IA-IC/IA+IC * IB+ID/IB-ID) Lopd: optical path difference Lopd = Lopl,1 - Lopl,2 The phase delay can be measured not affected by different polarization status between S and P.
A Modified ABCD Algorithm Complex Amplitude EA = -b(P1-P2) EB = b(S1+S2) EC = b(P1+P2) ED = -b(S1-S2) Different polarization S1 = S1expi(kLopl,1) S2 = S2expi(kLopl,2) P1 = P1expi(kLopl,1+fS) P2 = P2expi(kLopl,2+fP+p/2) • Different polarization between beam 1 and 2 • phase fS = fS,2-fS,1, and fP = fP,2-fP,1 • amplitude S2≠S1, P2≠P1
A Problem on the ABCD Algorithm ABCD signals IA = |b|2{P12+P22+2P1P2sin(kLopd+fP)} IB = |b|2{S12+S22+2S1S2cos(kLopd+fS)} IC = |b|2{P12+P22-2P1P2sin(kLopd+fP)} ID = |b|2{S12+S22-2S1S2cos(kLopd+fS)} The ABCD algorithm tells a wrong phase delay.
A Modified ABCD Algorithm Get another sampling with a p/2(=l/4) step IA0 = |b|2{P12+P22+2P1P2sin(kLopd+fP)} IA1 = |b|2{P12+P22+2P1P2cos(kLopd+fP)} IC0 = |b|2{P12+P22-2P1P2sin(kLopd+fP)} IC1 = |b|2{P12+P22-2P1P2cos(kLopd+fP)} • only P-polarization is described above. • assume fixed P1 and P2
A Modified ABCD Algorithm& Polarization Effects Phase delay FP = kLopd + fP = arctan(IA0-IC0/IA1+IC1) FS = kLopd + fS = arctan(IB0-ID0/IB1+ID1) The FSU may correct (detect) 1/2(FP+FS) = kLopd+1/2(fP+fS) • Instrumental polarization between two beams • cannot be principally corrected. • a phase delay of |fS-fP| still remains.
Impact on Astrometry- Polarization Effects on Object - Visibility of the object V = <|ES,1+ES,2+EP,1+EP,2|2> = <|ES,1|2>+<|ES,2|2>+<|EP,1|2>+<|EP,2|2> +<ES,1ES,2*>+<ES,1*ES,2> +<ES,1EP,1*>+<ES,1*EP,1> +<ES,1EP,2*>+<ES,1*EP,2> +<ES,2EP,1*>+<ES,2*EP,1> +<ES,2EP,2*>+<ES,2*EP,2> +<EP,1EP,2*>+<EP,1*EP,2> ES,1 = S1expi(kLopl,1’) ES,2 = S2expi(kLopl,2’+fS’) EP,1 = P1expi(kLopl,1’+fSP’) EP,2 = P2expi(kLopl,2’+fSP’+fP’)
Impact on Astrometry- Polarization Effects on Object - Cross correlation <ES,1ES,2*>+<ES,1*ES,2> = 2S1S2<cos(klopd’-fS’)> <ES,1EP,1*>+<ES,1*EP,1> = 2S1P1<cos(fSP’)> <ES,1EP,2*>+<ES,1*EP,2> = 2S1P2<cos(klopd’-fSP’-fP’)> <ES,2EP,1*>+<ES,2*EP,1> = 2S2P1<cos(klopd’+fSP’-fS’)> <ES,2EP,2*>+<ES,2*EP,2> = 2S2P2<cos(fSP’+fP’-fS’)> <EP,1EP,2*>+<EP,1*EP,2> = 2P1P2<cos(klopd’-fP’)>
Impact on Astrometry- Polarization Effects on Object - Visibility of the unpolarized object V = <|ES,1+ES,2+EP,1+EP,2|2> = <|ES,1|2>+<|ES,2|2>+<|EP,1|2>+<|EP,2|2> +2<S1S2cos(klopd’-fS’)>+2<P1P2cos(klopd’-fP’)> Because of <cos(fSP’)>=0….unpolarized light Astrometry of the unpolarized object k(Lopd-Lopd’)+{(fS-fP)-(fS’-fP’)} = kLBLsinq+{(fS-fP)-(fS’-fP’)} … q: astrometry
Impact on Astrometry- Summary - • Operation principle of FSU • Phase delay measurement not affected by polarization status of the reference. • A modified ABCD algorithm to calibrate instrumental polarization 2. Impact on astrometry • {(fS-fP)-(fS’-fP’)} gives error in astrometry • Similar beam combiner to the FSU is encouraged to science instrument
Polarization Model Optics can work as a phase retarder or a polarizer So = JSi … S: Stokes parm, J: Jones matrix Sf = JNJN-1…J1 S* Grouping Jtel(Az(h), El(h), r, q, l, St): telescope optics JStS(r, q, l): star separator optics JBL(l, St): base line optics Model Sf = JBLJStSJtelS*
Future Activities 1. Telescope optics (Jtel) time evolution: |fS-fP|(h, Dec, r, q) 2. Star separator optics (JStS) |fS-fP|(r) 3. Base line optics (JBL) |fS-fP|(St) 4. Color dependence fopd(l), Ix(l)@FSU, group delay