300 likes | 409 Vues
This article examines the significance of exercise evaluation in understanding strength curves and torque output across different joint angles. Key factors influencing muscle strength, such as force application, muscle architecture, and moment arm characteristics, are discussed. Optimal muscle insertion angles and their variations during the range of motion (ROM) are highlighted. A focus on progressive overload and exercise specificity is essential for enhancing performance and preventing injuries during training programs. The findings support tailored exercise regimens based on individual muscular and biomechanical attributes.
E N D
Exercise Evaluation • Strength curve similarity
Strength Curve (Kulig et al., 1984) • strength curve – plot of how maximum strength varies as a function of joint angle • strength - the ability of a muscle group to develop torque against an unyielding resistance in a single contraction of unrestricted duration
Mobility Determined by Torque Output Factors that Affect Muscle Torque Output • Force • Moment arm • Point of force application (attachment site) • Angle of force application (muscle insertion angle)
Factors That Affect Force Output • Physiological factors • Cross-sectional area • Fiber type • Neurological factors • Muscle fiber activation • Rate of motor unit activation • Biomechanical factors • Muscle architecture • Force-length relationship • Force-velocity relationship
60% 160% Single Joint Muscles 110-120%
Multi Joint Muscles >160% 60%
Mobility Determined by Torque Output Factors that Affect Muscle Torque Output • Force • Moment arm • Point of force application (attachment site) • Angle of force application (muscle insertion angle)
Muscle Attachments • Further from joint is better (theoretically) • Structural constraints negate #1 • Cannot alter attachment sites • Strength differences due, in part, to attachment differences
Muscle Insertion Angle • 90 is better • MIA typically < 45 • MIA not constant through joint ROM, affecting strength through ROM • Cannot alter MIA • Strength differences due, in part, to MIA differences
Understanding Moment Arm Changes Through ROM JA = 90° MIA = 90 ° JA = 45° MIA = 120 ° JA = 30° MIA = 150 ° JA = 150° JA = 120° MIA = 60 ° MIA = 30 °
Understanding Moment Arm Changes Through ROM JA = 90° MIA = 90 ° JA = 45° MIA = 120 ° JA = 30° MIA = 150 ° JA = 150° MIA = 30 ° JA = 120° MIA = 60 °
Understanding Moment Arm Changes Through ROM JA = 90° MIA = 90 ° JA = 45° MIA = 120 ° JA = 30° MIA = 150 ° JA = 150° MIA = 30 ° JA = 120° MIA = 60 °
Biceps Brachii Strength Torque (Nm) 0 90 180 Joint Angle (°) Joint Angle
Brachioradialis Strength Torque (Nm) 0 90 180 Joint Angle (°) Joint Angle
Summary of System Level Rotational Function • Torque output varies across ROM • Variation depends on: • Force-length changes • Moment arm changes • Variation differs across muscles & joints
Varies according to force-length & MIA (moment arm) changes for all muscles in FMG 0 indicates anatomical position
Resistance Muscle 0 indicates anatomical position
Resistance Muscle 0 indicates anatomical position
Resistance Muscle 0 indicates anatomical position
Resistance Muscle 0 indicates anatomical position
Exercise Evaluation • Strength curve similarity • Specificity of muscle roles • Specificity of ROM • Specificity of movement & contraction speed
Summary • Exercise evaluation is important to ensure appropriate physical training, whether for performance enhancement, injury prevention, or injury rehabilitation. • Exercise evaluation should focus on the progressive overload principle and the specificity principle. • The importance of each principle depends on the goal(s) of the exercise program.