1 / 34

The Nobel Prize in Chemistry 2003

The Nobel Prize in Chemistry 2003. Peter Agre. Roderick MacKinnon. Aquaporin (PDB file: 1IH5). Models of AQP1, sequence alignment of selected superfamily members and a view of the density map. Sui et al . (2001) Nature 414, 872-876.

tekli
Télécharger la présentation

The Nobel Prize in Chemistry 2003

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Nobel Prize in Chemistry 2003 Peter Agre Roderick MacKinnon

  2. Aquaporin (PDB file: 1IH5)

  3. Models of AQP1, sequence alignment of selected superfamily members and a view of the density map. Sui et al. (2001) Nature 414, 872-876

  4. Vista superior (izqda) y lateral (drcha) del tetrámero de acuaporina en una bicapa lipídica De Groot & Grubmüller Science (2001) 294: 2304-2305

  5. The effective pore diameter (a) and hydrophobicity (b) of the AQP1 and GlpF channels Sui et al. (2001) Nature 414, 872-876

  6. Side-views of AQP1 Sui et al. (2001) Nature 414, 872-876

  7. 205 moléculas de agua en los alrededores del poro de la acuaporina durante la simulación por Dinámica Molecular De Groot & Grubmüller Science (2001) 294: 2304-2305

  8. Orientación dipolar de las moléculas de agua pasando a través del poro de la acuaporina humana De Groot & Grubmüller Science (2001) 294: 2304-2305

  9. Representación esquemática del paso de las moléculas de agua a través del poro de la acuaporina humana (AQP1) y de la gliceroporina bacteriana (GlpF) De Groot & Grubmüller Science (2001) 294: 2304-2305

  10. Sucrose-specific porin (PDB code: 1a0s)

  11. Canal de Potasio (Ionóforo) ..\..\Estructuras\Canal(1BL8).msv

  12. Iones de K en el poro ..\..\Estructuras\CanalK.msv

  13. Nature 30 May 2002

  14. Gating and opening of a bacterial Ca2+-gated K+ channel Jiang et al. (2002) Nature 417, 515-522 M. Schumacher & J.P. Adelman (2002) Nature 417, 501 - 502

  15. Nature 1 May 2003

  16. Voltage sensing in a K+ channel The control of ion flow through voltage-gated channels is very sensitive to the voltage across the cell membrane. By comparison, an electronic device such as a transistor is much less sensitive to applied voltage FJ Sigworth (2003) Nature 423, 21 Jiang et al. (2003) Nature 423, 42-48

  17. Sodium channel responsible for initiating the cardiac action potential A single amino acid change (red dot) in this large protein may make people more susceptible to heart arrhytmias J. Marx (2002) Science 297, 1252

  18. Structure of a chloride channel at 3.0 Å Stereo view from the extracellular side (a) and side view with the extracellular solution above (b) Dutzler et al. (2002) Nature 415, 287-294

  19. Structure of a chloride channel at 3.0 Å The two halves of the subunut are green and cyan, and regions forming the Cl- selectivity region are red Dutzler et al. (2002) Nature 415, 287-294

  20. Cl- selectivity filter and ion binding site Dutzler et al. (2002) Nature 415, 287-294

  21. Surface electrostatic potential of the dimer forming the chloride channel Dutzler et al. (2002) Nature 415, 287-294

  22. Two architectures for ion channel proteins: antiparallel (Cl-) and parallel (K+) Dutzler et al. (2002) Nature 415, 287-294

  23. Membrane Transporters: • Symporters and Antiporters • Use a solute gradient to drive the translocation of other substrates: ions, sugars, drugs, neurotransmitters, nucleosides, amino acids, peptides, and other hydrophylic solutes • The largest family is the Major Facilitator Superfamily (MFS), with more than 1000 members identified to date • Most MFS proteins have 12 transmembrane alpha-helices • The most common substrate translocation mechanism is based on the alternating-access model, with two major conformations: inward-facing (Ci) and outward-facing (Co)

  24. Overall structure of lactose/proton symport Abramson et al. (2003) Science 301, 610-615

  25. Lactose/proton symport Structural changes between inward- and outward-facing conformations Abramson et al. (2003) Science 301, 610-615

  26. Lactose/proton symport A possible lactose/proton symport mechanism Abramson et al. (2003) Science 301, 610-615

  27. Overall structure of G3P/Pi antiport Huang et al. (2003) Science 301, 616-620

  28. The G3P/Pi antiport Proposed single–binding site, alternating-access mechanism Huang et al. (2003) Science 301, 616-620

  29. A protein-conducting channel General architecture of the SecY complex The hydrophobic pore ring (gold), and plug (green) movement towards the gamma-subunit (magenta) Van den Berg et al. (2004) Nature 427, 36-44

  30. A protein-conducting channel Different stages of translocation of a secretory protein Van den Berg et al. (2004) Nature 427, 36-44

  31. Selectivity filter water molecules and residues forming the hydrophilic face of the channel pore Sui et al. (2001) Nature 414, 872-876

  32. Residues defining the constriction region Sui et al. (2001) Nature 414, 872-876

  33. Paso de las moléculas de agua a través del poro de la acuaporina De Groot & Grubmüller Science (2001) 294: 2304-2305

More Related