400 likes | 864 Vues
The Nobel Prize in Chemistry 2003. Peter Agre. Roderick MacKinnon. Aquaporin (PDB file: 1IH5). Models of AQP1, sequence alignment of selected superfamily members and a view of the density map. Sui et al . (2001) Nature 414, 872-876.
E N D
The Nobel Prize in Chemistry 2003 Peter Agre Roderick MacKinnon
Models of AQP1, sequence alignment of selected superfamily members and a view of the density map. Sui et al. (2001) Nature 414, 872-876
Vista superior (izqda) y lateral (drcha) del tetrámero de acuaporina en una bicapa lipídica De Groot & Grubmüller Science (2001) 294: 2304-2305
The effective pore diameter (a) and hydrophobicity (b) of the AQP1 and GlpF channels Sui et al. (2001) Nature 414, 872-876
Side-views of AQP1 Sui et al. (2001) Nature 414, 872-876
205 moléculas de agua en los alrededores del poro de la acuaporina durante la simulación por Dinámica Molecular De Groot & Grubmüller Science (2001) 294: 2304-2305
Orientación dipolar de las moléculas de agua pasando a través del poro de la acuaporina humana De Groot & Grubmüller Science (2001) 294: 2304-2305
Representación esquemática del paso de las moléculas de agua a través del poro de la acuaporina humana (AQP1) y de la gliceroporina bacteriana (GlpF) De Groot & Grubmüller Science (2001) 294: 2304-2305
Canal de Potasio (Ionóforo) ..\..\Estructuras\Canal(1BL8).msv
Iones de K en el poro ..\..\Estructuras\CanalK.msv
Gating and opening of a bacterial Ca2+-gated K+ channel Jiang et al. (2002) Nature 417, 515-522 M. Schumacher & J.P. Adelman (2002) Nature 417, 501 - 502
Voltage sensing in a K+ channel The control of ion flow through voltage-gated channels is very sensitive to the voltage across the cell membrane. By comparison, an electronic device such as a transistor is much less sensitive to applied voltage FJ Sigworth (2003) Nature 423, 21 Jiang et al. (2003) Nature 423, 42-48
Sodium channel responsible for initiating the cardiac action potential A single amino acid change (red dot) in this large protein may make people more susceptible to heart arrhytmias J. Marx (2002) Science 297, 1252
Structure of a chloride channel at 3.0 Å Stereo view from the extracellular side (a) and side view with the extracellular solution above (b) Dutzler et al. (2002) Nature 415, 287-294
Structure of a chloride channel at 3.0 Å The two halves of the subunut are green and cyan, and regions forming the Cl- selectivity region are red Dutzler et al. (2002) Nature 415, 287-294
Cl- selectivity filter and ion binding site Dutzler et al. (2002) Nature 415, 287-294
Surface electrostatic potential of the dimer forming the chloride channel Dutzler et al. (2002) Nature 415, 287-294
Two architectures for ion channel proteins: antiparallel (Cl-) and parallel (K+) Dutzler et al. (2002) Nature 415, 287-294
Membrane Transporters: • Symporters and Antiporters • Use a solute gradient to drive the translocation of other substrates: ions, sugars, drugs, neurotransmitters, nucleosides, amino acids, peptides, and other hydrophylic solutes • The largest family is the Major Facilitator Superfamily (MFS), with more than 1000 members identified to date • Most MFS proteins have 12 transmembrane alpha-helices • The most common substrate translocation mechanism is based on the alternating-access model, with two major conformations: inward-facing (Ci) and outward-facing (Co)
Overall structure of lactose/proton symport Abramson et al. (2003) Science 301, 610-615
Lactose/proton symport Structural changes between inward- and outward-facing conformations Abramson et al. (2003) Science 301, 610-615
Lactose/proton symport A possible lactose/proton symport mechanism Abramson et al. (2003) Science 301, 610-615
Overall structure of G3P/Pi antiport Huang et al. (2003) Science 301, 616-620
The G3P/Pi antiport Proposed single–binding site, alternating-access mechanism Huang et al. (2003) Science 301, 616-620
A protein-conducting channel General architecture of the SecY complex The hydrophobic pore ring (gold), and plug (green) movement towards the gamma-subunit (magenta) Van den Berg et al. (2004) Nature 427, 36-44
A protein-conducting channel Different stages of translocation of a secretory protein Van den Berg et al. (2004) Nature 427, 36-44
Selectivity filter water molecules and residues forming the hydrophilic face of the channel pore Sui et al. (2001) Nature 414, 872-876
Residues defining the constriction region Sui et al. (2001) Nature 414, 872-876
Paso de las moléculas de agua a través del poro de la acuaporina De Groot & Grubmüller Science (2001) 294: 2304-2305