1 / 26

IS528-ADD1 Novel diagnostic and therapeutic radionuclides

IS528-ADD1 Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals. Katharina Domnanich 1 , Catherine Ghezzi 2 , Ferid Haddad 3 , Mikael Jensen 4 , Christian Kesenheimer 6 , Ulli Köster 5 , Cristina Müller 1 , Bernd Pichler 6 ,

thimba
Télécharger la présentation

IS528-ADD1 Novel diagnostic and therapeutic radionuclides

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IS528-ADD1 Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals Katharina Domnanich1, Catherine Ghezzi2, Ferid Haddad3, Mikael Jensen4, Christian Kesenheimer6, Ulli Köster5, Cristina Müller1, Bernd Pichler6, Jean-Pierre Pouget7, Anna-Maria Rolle6, Roger Schibli1, Gregory Severin4, Andreas Türler1, Stefan Wiehr6, Nick van der Meulen1 Local contact: Karl Johnston 1 Paul Scherrer Institut, Villigen – Universität Bern – ETH Zürich, Switzerland 2 CHU – INSERM – Université Grenoble, France 3 ARRONAX – INSERM – CRCNA – Subatech Nantes, France 4 Risø National Laboratory, Roskilde, Denmark 5 Institut Laue Langevin, Grenoble, France 6 Universitätsklinik Tübingen, Germany 7Institut de Recherche en Cancérologie de Montpellier, France

  2. Radiometals for diagnostic imaging and therapy Objectives M☢ Receptor Chelator Peptide Abs Vitamins Photon or positron emitters 99mTc, 68Ga, … for imaging Particle emitters 90Y, 177Lu, … for radionuclide therapy applicable only with high specific activity and chemical purity

  3. The Nuclear Medicine Alphabet SPECT Camera PET-Scanner  +  Auger-e- -

  4. Production of n.c.a. [149/152/155Tb]-TerbiumISOLDE CERN and PSI Paul Scherrer Institute Separation by means of cation exchange chromatography Spallation of tantalum targets followed by resonant laser ionization of Dy precursor and mass separation  149,152,155Tb with some oxide sidebands

  5. Tumor Tageting Agent for Tb-CoordinationChemical Structure with 3 Functionalities albumin binder folic acid Tb-folate Chracteristics: stable coordination of Tb-isotopes high affinity to the folate receptor prolonged blood circulation time Tb-DOTA

  6. Terbium: the Swiss Army knife of Nuclear Medicine Müller et al. 2012, J Nucl Med 53:1951.

  7. Terbium-149: alpha-EmitterFolate Receptor Targeted a-Radionuclide Therapy Group A: control Group B: 149Tb-folate 2.2 MBq Group C: 149Tb-folate 3.0 MBq Müller et al. 2013, Pharmaceuticals, submitted

  8. 155Tb: low-dose SPECT prior to therapy Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002

  9. in vivo validation with peptides, mAbs and vitamins Peptides monoclonal antibody folate MD DOTATATE chCE7 chCE7 cm09 cm09 Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002

  10. Efficient parallel operation 152Tb 149Tb 155Tb HRS setup

  11. 140Nd ε 3.37 d 140Pr β+ 2.4 3.4 m 140Ce 140Nd/140Pr: an in vivo PET generator Köster et al. 2014, Nucl Med Biol, submitted.

  12. Understanding the Auger release from chelators 3.37 d QEC = 437 140Nd 3.39 min Nd Pr Ce 140Pr BR+ = 51% stable 140Ce

  13. Understanding the Auger release from chelators 3.37 d QEC = 437 140Nd 3.39 min ? Pr Nd 140Pr BR+ = 51% stable Pr 140Ce

  14. Understanding the Auger release from chelators 3.37 d QEC = 437 140Nd 134Ce 3.39 min 140Pr 134La BR+ = 51% 3.37 d stable QEC = 386 6.45 min 140Ce 134Ba BR+ = 63.6% stable 44mSc 2.44 d E4 271 3.97 h 44Sc BR+ = 94.3% 1157 stable 44Ca

  15. Theranostic of Invasive Aspergillosisand Echinococcus Multilocularis

  16. Survival with anti-HER2 212Pb-mABS 212Pb-Trastuzumab HER2 212Pb-Trastuzumab (0.37MBq) 212Pb-Trastuzumab (0.74MBq) 212Pb-Trastuzumab (1.48MBq) Survival (%) Boudousq et al., 2013; PLoS ONE 8(7):e69613. Time post-graft (days)

  17. Auger release of 212Bi ? 0.3 s b 212Po 60.5 min 10.6 h 212Bi a 212Pb b a 208Pb 36% 208Tl (Stable) 3.05min • 45.1% conversion electrons •  Auger cascades • partial delabeling?

  18. 169Er (beta-) vs. 165Er (Auger) radiobiology 169Er

  19. Beam request Shifts • 149Tb-cm09 dose escalation study 8 • 149Tb-PRRT pilot study 3 • 152Tb/155Tb companion diagnostics incl. • 140Nd/134Ce chelator optimization 6 140Nd/134Ce immuno-PET 6 • exploratory experiments (Pb, Bi,…) 3 • mass separation of 169Er/168Er 6 (offline) Total 26 + 6 Available -10 New request 16 + 6 (offline)

  20. Off-line separation of 169Er • Therapy study with 6 mice, 70 MBq 169Er-DOTATOC per mouse • factor 2 for decay losses and labeling yield • 850 MBq needed (1E15 atoms collected) • LA[169Er]=5 MBq  up to 500 MBq can be handled in “class C” bat. 170  collect and ship two separate samples of 425 MBq each  ship as UN2910 (“excepted package”) • implantation current 1 nA of 169Er for 24 h (3 shifts per sample) • total current 1 A Er (168Er + 169Er) [cf. 7Be collections] • ionization potential 6.11 eV > 0.5% thermal ionization efficiency • RILIS efficiency >5%? (to be tested!) • ship 20 GBq from ILL (2% of A2 limit > “type A” transport) • Note: 169Er is a low-energy beta emitter, with very low emission of  rays: 0.16% 8 keV, 0.01% 110 keV  very low dose rate: <1 Gy/h at 1 m from unshielded 1 GBq sample.

  21. Indirect production of 203Pb, 205Bi

  22. Imaging Studies Using PET and SPECTKB Tumor-Bearing Nude Mice PET SPECT SPECT 152Tb-folate: 9 MBq Scan Start: 24 h p.i. Scan Time: 4 h 155Tb-folate: 4 MBq Scan Start: 24 h p.i. Scan Time: 1 h 161Tb-folate: 30 MBq Scan Start: 24 h p.i. Scan Time: 20 min Müller et al. 2012, J Nucl Med 53:1951.

  23. Arsenic: another theranostic multiplet 71As: low-energy +emitter for high-resolution PET ? 74As: long-lived + emitter for longitudinal PET studies 77As: reactor-produced - emitter for therapy 72As: generator-produced +emitter for PET

  24. Excellent resolution with Derenzo phantom 18F Eb+ = 0.25 MeV 71As Eb+ = 0.35 MeV Köster et al. 2014, Nucl Med Biol, submitted.

More Related