1 / 9

The Pressure Temperature Law

The Pressure Temperature Law. Getting Hot under the Collar since 1802…er, 1702. Such a Caring Scientist. In the same paper from 1802, Joseph Gay-Lussac published another law stating: As the Temperature of a gas Increases, the Pressure Increases proportionally. Joseph Gay-Lussac (1778-1850).

tillie
Télécharger la présentation

The Pressure Temperature Law

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Pressure Temperature Law Getting Hot under the Collar since 1802…er, 1702

  2. Such a Caring Scientist In the same paper from 1802, Joseph Gay-Lussac published another law stating: As the Temperature of a gas Increases, the Pressure Increases proportionally Joseph Gay-Lussac (1778-1850) Pneumatic Chemist # 3…again

  3. Amonton’s / Gay-Lussac’s…NEITHER! • Guillaume Amontons was the first to publish the relationship between pressure and temperature in 1702; however, it languished in relative obscurity for 100 years until Gay-Lussac published it in conjunction with Charles’s Law. • For this reason, it is sometime (erroneously) called Gay-Lussac’s Law. • It is not Amontons’ Law, either.

  4. Can We Agree to Disagree? • Gay-Lussac’s Law: • The ratio between the volumes of the reactant gases and the products can be expressed in simple whole numbers. • Amontons’ Laws: • The force of friction is directly proportional to the applied load. (Amontons’ 1st Law) • The force of friction is independent of the apparent area of contact. (Amontons’ 2nd Law)

  5. P & T For any given gas, the quotient of its Pressure and absolute Temperature (in Kelvin) is constant If Volume & Mass remain the same P ~ T P / T = C Remember, °C + 273 = K

  6. Hot & Heavy (pressure…) The Pressure/Temp Law: For a fixed amount of an ideal gas kept at a fixed volume, P (pressure) and T (temperature) are directly proportional (when one increases, the other increases, equally). Sorry, no cool gif…

  7. What They Said P ~ T (in Kelvin) P / T = C P2 / T2 = C2 If C = C2 P / T = C = P2 / T2 P1 = P2 T1 T2 300 K (80° F) 1.0 atm 150 K (-189° F) 0.5 atm

  8. Is Gay Smarter than a 10th Grader? A container with a fixed volume is at 20.0°C with a pressure of 63.25 inHg. If the temperature is increased to 110.0°C, what is the new pressure? P1 = 63.25 inHg, T1 = 20°C + 273 = 293 K P2 = ?, T2 = 110°C + 273 = 383 K (63.25 inHg)/(293 K) = P2 / (383 K) P2 = 82.68 inHg

  9. Probably, but He’s Way Dead A container has an internal pressure of 25.6 psi at 15°C. The container will rupture if the internal pressure exceeds 47.0 psi. What is the maximum temperature possible? P1 = 25.6 psi, T1 = 15°C + 273 = 288 K P2 = 47.0 psi, T2 = ? (25.6 psi) / (288 K) = (47.0 psi) / T2 T2 = 529 K = 256°C

More Related