230 likes | 349 Vues
This workshop, held from September 1-3, 2009, focused on advanced methodologies for breach evaluation in homogeneous embankments. Key discussions included the initiation of slope protection failures leading to breach erosion computations, the impact of overtopping, and the evaluation of single breaches. A four-stage breach process, with options for two headcut migration models and dependent erosion discharge stages, was presented. The workshop highlighted laboratory physical modeling, failure case histories, and development of computational models for predicting breach timing and outflow.
E N D
WINDAMb-e(Windows Dam Analysis Modules) WINDAM Technology Workshop Sept 1-3, 2009
WINDAM PROGRESSION • WINDAMb: Breach evaluation of homogeneous embankment • Failure of the slope protection is beginning point for breach erosion computations • Breach resulting from overtopping • Single breach evaluated • Four stage process • Option of two headcut migration models • Erosion and discharge stage dependent • Breach timing and outflow predicted
WINDAM PROGRESSION • WINDAMb: Breach evaluation of homogeneous embankment • Supporting Research and Development • Laboratory – physical modeling • Data Sets – Failure case histories • Algorithms – computational model development • Model Comparisons • Computational Model – Code & Interface Development & Testing
Steep Channel Studies Laboratory Laboratory Algorithms • Steep Channel • Phase 1 Failure • Steep Channel Flume Tests • Headcut Development • Embankment Flume Tests • Headcut Migration • Breach Widening • Embankment • Widening • Discharge Model • Discharge • Breach Widening • Erodibility • Discharge Model • Erodibility Data Sets Computer Models • ARS Lab Data Additional Data SIMBA • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Laboratory Laboratory Algorithms Flume Tests • Steep Channel • Phase 1 Failure • Steep Channel Flume Tests • Headcut Development Flume Tests • Embankment • Headcut Migration • Breach Widening • Embankment • Widening • Discharge Model • Discharge • Breach Widening • Erodibility • Discharge Model • Erodibility Data Sets Computer Models • ARS Lab Data Additional Data SIMBA • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Laboratory Laboratory Algorithms Overtopping Failure Studies • Steep Channel • Phase 1 Failure • Steep Channel Flume Tests • Headcut Development • Embankment Flume Tests • Headcut Migration • Breach Widening • Embankment • Widening • Discharge Model • Discharge • Breach Widening • Erodibility • Discharge Model • Erodibility Data Sets Computer Models • ARS Lab Data Additional Data SIMBA • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Erodibility Measurement Laboratory Laboratory Algorithms • Steep Channel • Phase 1 Failure • Steep Channel Flume Tests • Headcut Development Flume Tests • Embankment • Headcut Migration • Breach Widening • Embankment • Widening • Discharge Model • Discharge • Breach Widening • Erodibility • Discharge Model • Erodibility Data Sets Computer Models • ARS Lab Data Additional Data SIMBA • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Laboratory Algorithms • Steep Channel • Phase 1 Failure Flume Tests • Headcut Development • Embankment • Headcut Migration • Breach Widening • Widening • Discharge Model • Discharge • Erodibility Data Sets Data Sets Data Sets • ARS Lab Data Computer Models • ARS Lab Data • ARS Lab Data Additional Data Additional Data Additional Data SIMBA • Case Studies • Case Studies • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Laboratory Algorithms Historical Case Study Data • Steep Channel • Phase 1 Failure Flume Tests • Headcut Development • Embankment • Headcut Migration • Breach Widening • Widening • Discharge Model • Discharge • Erodibility Data Sets Data Sets Data Sets • ARS Lab Data Computer Models • ARS Lab Data • ARS Lab Data Additional Data Additional Data Additional Data SIMBA • Case Studies • Case Studies • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Algorithms Laboratory Headcut Migration Algorithms • Phase 1 Failure • Steep Channel • Phase 1 Failure • Headcut Development Flume Tests • Headcut Development • Headcut Migration • Embankment • Headcut Migration • Breach Widening • Widening • Widening • Discharge Model dX/dt • Discharge • Discharge • Erodibility Data Sets Computer Models • ARS Lab Data • Two Headcut Migration Models • Stress Based • dX/dt = Hkd(te – tc)/[2Ev] • Energy Based • dX/dt = C(qH)1/3 Additional Data SIMBA • Case Studies WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
Laboratory Algorithms • Steep Channel • Phase 1 Failure Flume Tests • Headcut Development • Embankment • Headcut Migration • Breach Widening • Widening • Discharge Model • Discharge • Erodibility SIMBA Data Sets Computer Models • ARS Lab Data Computer Models Additional Data SIMBA SIMBA • Case Studies WINDAM a) allowable overtopping b) breach WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
WHAT IS SIMBA? • Philosophy • Use fundamental relations to represent the dominant physical processes • Evaluate/validate and refine relations and algorithms as appropriate from laboratory tests and available data (Avoid calibration: focus on fundamental processes) • Formulate in terms of parameters available for field use (material parameters are key)
Laboratory Algorithms • Steep Channel • Phase 1 Failure Flume Tests • Headcut Development • Embankment • Headcut Migration • Breach Widening • Widening • Discharge Model • Discharge • Erodibility Data Sets Computer Models • ARS Lab Data Computer Models Additional Data SIMBA SIMBA • Case Studies WINDAM a) allowable overtopping b) breach WINDAM a) allowable overtopping b) breach Model Comparisons • NWS Breach, • HR Breach, • FireFox, & others
EROSION COMPUTATIONS • Four stage process • Development of a headcut on downstream slope • Advance of the headcut through the crest • Advance of the headcut into the reservoir • Widening during drawdown
1) HEADCUT FORMATION 2) HEADCUT ADVANCE (through crest) 4 STAGE Breach Erosion Model 3) HEADCUT ADVANCE (into reservoir) 4) BREACH WIDENING
Key Embankment Erosion Processes Impinging Jet Scour Surface Detachment dY/dt dY/dt Headcut Migration Widening dW/dt dX/dt
WINDAM DEVELOPMENT PLANS • WINDAMc: Breach evaluation of homogeneous embankment expanded. • Breach resulting from internal erosion. • Single breach evaluated • Erosion and discharge stage dependent • Breach timing and outflow predicted
Causes of Dam Failures Percentage Overtopping & Spillway 23 - 52% Piping/Seepage/Internal Erosion 25 - 44% Slides 2 - 15% Miscellaneous 9 - 40% (Vijay Singh - “Dam Breach Modeling Technology” 1993)
Internal Erosion Failure Studies
WINDAM DEVELOPMENT PLANS • WINDAMd: Breach evaluation expanded • Potential failure initiation at toe, berms, and groins. • Alternative embankment slope protection materials (i.e. blocks, reinforced vegetation)
WINDAM DEVELOPMENT PLANS • WINDAMe: Breach evaluation expanded • Breach evaluation of Multiple materials in zoned embankment due to overtopping/ internal erosion.
WINDAM TIMELINE • WINdowsDam Analysis Modules (WINDAM) is a modular software application, being developed for analysis of earth embankments. • The development is being carried out in stages: • WINDAMa (alpha spr. 2006, beta fall 2006) • WINDAMa+ (alpha fall 2007, beta spr. 2008) • WINDAMb (alpha smr. 2009, beta wntr. 2009) • WINDAMc (alpha smr. 2011, beta spr. 2012) • WINDAMd (alpha fall 2013, beta spr. 2014) • WINDAMe (alpha fall 2015, beta spr. 2016