1 / 27

SciBooNE, A Neutrino Cross Section Measurement Experiment at Fermilab

SciBooNE, A Neutrino Cross Section Measurement Experiment at Fermilab. 1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion. Teppei Katori for the SciBooNE collaboration Massachusetts Institute of Technology

tosca
Télécharger la présentation

SciBooNE, A Neutrino Cross Section Measurement Experiment at Fermilab

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SciBooNE, A Neutrino Cross Section Measurement Experiment at Fermilab 1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion Teppei Katori for the SciBooNE collaboration Massachusetts Institute of Technology New Trends in High Energy Physics, Alushta, Ukraine, Sep. 6, 2011

  2. 1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion Teppei Katori, MIT

  3. 1. Introduction Neutrino oscillation experiments We compare data and MC neutrino interaction rate, to find neutrino oscillation To extract accurate information, accurate cross section (and flux) knowledge is essential Neutrino oscillation is a function of neutrino energy and flight distance To measure q13, L/E needs to be ~103 (because Dm31~10-3), T2K’s choice is L = 295 km E ~ 600 MeV It is important to know the neutrino cross sections around 600 MeV Teppei Katori, MIT

  4. 1. Introduction - First long baseline neutrino oscillation experiment dedicated to q13 measurement - >500 collaborators, 12 countries Teppei Katori, MIT

  5. 1. Introduction Neutrino cross section measurement world data - sparse, large error - many channels contribute - old data and modern data disagree T2K old data QE DIS resonance modern data Teppei Katori, MIT

  6. 1. Introduction NCpo for ne background for q13 measurement - This is the biggest misID background for ne signal signal ne e W p n ne appearance+backgrounds misID (NCpo event, etc) beam intrinsic ne n n Z N po g N Background g T2K collabo. Teppei Katori, MIT

  7. 1. Introduction nm background for precise Dm31 measurement W- e need precise measurement of q23 and Dm31, by nm disappearance measurement c T2K collabo. sin22q23 mis-reconstruction of neutrino energy spoils nm disappearance signals Reconstructed neutrino energy at far detector T2K collabo. Dm231 background nuclear pion absorption Reconstructed neutrino energy (GeV) Teppei Katori, MIT

  8. 1. Introduction Booster Neutrino Beam (BNB) - It provides similar energy with T2K - Ideal place to measure T2K related neutrino cross section before T2K experiment Goal - precise neutrino cross section measurements - CC inclusive, CCp+ production rate, NCpoproduction rate, etc Detector requirement - fine grained neutrino detector (JPARC) (BNB) Teppei Katori, MIT

  9. 1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion Teppei Katori, MIT

  10. 2. SciBooNE detector SciBooNE detector The SciBooNE detector consists of 3 major components Muon RangeDetector (MRD) nbeam Electron Catcher (EC) SciBar Teppei Katori, MIT

  11. n 2. SciBooNE detector SciBar detector - Extruded scintillators with WLS fiber readout by multi-anode PMT - 14,366 channel x-y tracker SciBar Extruded scintillator (15t) 3m Multi-anode PMT (64 ch.) 3m Wave-length shifting fiber Teppei Katori, MIT 1.7m

  12. 2. SciBooNE detector PMT charged particle Extruded scintillation bar - Polystyrene (PS), 1% PPO and 0.03% POPOP - TiO2 is merged in outer layer as a reflector - ~20 p.e. for MIP particle - K2K, MINOS, SciBooNE, MINERvA, T2K... scintillation light (blue) shifted light (green) SciBar Extruded scintillator production machine (Fermilab) Teppei Katori, MIT

  13. 2. SciBooNE detector Wave length shifting (WLS) fiber - absorb blue light (430 nm), emit green light (476 nm) - attenuation ~350 cm SciBar WLS fiber optical fiber Teppei Katori, MIT

  14. 2. SciBooNE detector Wave length shifting (WLS) fiber - absorb blue light (430 nm), emit green light (476 nm) - attenuation ~350 cm SciBar reemission absorption captured by fiber WLS fiber optical fiber Teppei Katori, MIT

  15. Fibers 262 cm n Beam 8 cm Readout Cell 4 cm 2. SciBooNE detector Electron catcher (EC) - Lead with scintillation fiber “spaghetti” calorimeter to see electron - 11 radiation length, 256 channels EC MRD Muon Range Detector (MRD) - Iron plates with X-Y scintillator panels - measure the muon momentum up to 0.9GeV - ~10% momentum resolution (362 channels) Teppei Katori, MIT

  16. SciBar EC 2. SciBooNE detector all around the world HARP (CERN, Switzerland) 2001 SciBar Production (Fermilab, USA) 2003 Solar neutron (Puebla, Mexico) 2011 SciBooNE (Fermilab, USA) 2007 CHORUS (CERN, Switzerland) 1994 EC Production (INFN, Italy) 1991 K2K (KEK, Japan) 2003 Teppei Katori, MIT

  17. SciBar EC 2. SciBooNE detector all around the world HARP (CERN, Switzerland) 2001 SciBar Production (Fermilab, USA) 2002 Solar neutron (Puebla, Mexico) 2011 SciBooNE (Fermilab, USA) 2007 CHORUS (CERN, Switzerland) 1994 EC Production (INFN, Italy) 1992? K2K (KEK, Japan) 2003 DOE-wide Pollution Prevention Star (P2 Star) Award Teppei Katori, MIT

  18. SciBar EC 2. SciBooNE detector all around the world HARP (CERN, Switzerland) 2001 SciBar Production (Fermilab, USA) 2002 Solar neutron (Puebla, Mexico) 2011 SciBooNE (Fermilab, USA) 2007 CHORUS (CERN, Switzerland) 1994 SciBooNE time scale Mar. 2005 K2K ends Nov. 2005 SciBooNE is proposed Dec. 2005 Approved Jul. 2006 SciBar arrived from Japan Sep. 2006 Groundbreaking Apr. 2007 SciBar assembly completed Jun. 2007 SciBooNE started to beam data Aug. 2008 Run end In SciBooNE, students can work all components of the experiment, including hardware, software, analysis, and the publication We need more exriements like this! EC Production (INFN, Italy) 1992? K2K (KEK, Japan) 2003 DOE-wide Pollution Prevention Star (P2 Star) Award Teppei Katori, MIT

  19. 1. Motivation 2. SciBooNE detector 3. Cross section measurements 4. Conclusion Teppei Katori, MIT

  20. μ n p p 3. Neutrino interactions in SciBooNE CCQE (Charged Current Quasi-elastic) interaction n+p®n+m+ candidate n+n®p+m- candidate μ μ SciBar EC MRD SciBar EC MRD Teppei Katori, MIT

  21. 3. Cross section results of SciBooNE CCQE cross section - highest event rate in this energy - SciBooNE measures higher cross sectionthan old data, but consistent with MiniBooNE CC inclusive cross section - no nuclear model dependence - SciBooNE measures higher cross sectionthan old data, but consistent with NOMAD? Publication in preparation PRD83(2010)012005 Teppei Katori, MIT

  22. 3. Cross section results of SciBooNE Coherent pion production - ~10% of pion production channel. - isospin symmetry suggests coherent pion production, CC:NC=2:1 - K2K measured no CC coherent p+ - SciBooNE can utilize energy deposit around vertex, “vertex activity”, and confirmed K2K result NCpo production cross section - the most important misID background for ne appearance search - coherent fraction is carefully studied PRD81(2010)033004 PRD81(2010)111102 PRD78(2008)112004 Teppei Katori, MIT

  23. 3. Oscillation physics SciBooNE Muon angles PRD84(2011)012009 nm-flux from Kaon decay - ne from K-decay has large error (~40%) on oscillation analysis of MiniBooNE. Since high energy nm at SciBooNE is dominated from K-decay (=multiple tracks), SciBooNE can measure Kaon production rate by template fit. - SciBooNE measures Kaon production rate with ~13% error in their acceptance range (MiniBooNE Kaon production error is 40%). 1 track total Kaon 2 track total Kaon 3 track total Kaon Teppei Katori, MIT

  24. 3. Oscillation physics SciBooNE MiniBooNE-SciBooNE combined nm- disappearance search - they share many systematics i. same neutrino beam ii. same target material (=carbon) so, simultaneous analysis of both data set has higher power for oscillation analysis. ® joint analysis can push nm-disappearance limit. ArXiv:1106.5685 MiniBooNE only prediction Mini/SciBooNE joint analysis Teppei Katori, MIT

  25. 4. Conclusion • SciBooNE is a neutrino cross section measurement experiment around 1GeV, where the most important energy scale for T2K experiment in Japan. We started to take data in June 2007, and completed on Aug. 2008, and we collected 2.52x1020POT total Physics results here are used for T2K and MiniBooNE. Teppei Katori, MIT

  26. SciBooNE collaboration Universitat Autonoma de Barcelona University of Cincinnati University of Colorado Columbia University Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London Indiana University Institute for Cosmic Ray Research (ICRR) Kyoto University Los Alamos National Laboratory Louisiana State University Purdue University Calumet Università degli Studi di Romand INFN-Roma Saint Mary’s University of Minnesota Tokyo Institute of Technology Universidad de Valencia Дякуюза вашу увагу! Teppei Katori, MIT

More Related