1 / 32

Acid Base Balance

Acid Base Balance. NURS 108 ECC Majuvy L. Sulse MSN, RN, CCRN. TERMS. Acid Substance that dissociates or lose ions Acidosis Process that adds acids or eliminates base from body fluids Hydrogen ions increased pH is decreased<7.35 Base Substance that accepts ions Alkalosis

trevor
Télécharger la présentation

Acid Base Balance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Acid Base Balance NURS 108 ECC Majuvy L. Sulse MSN, RN, CCRN

  2. TERMS • Acid • Substance that dissociates or lose ions • Acidosis • Process that adds acids or eliminates base from body fluids • Hydrogen ions increased • pH is decreased<7.35 • Base • Substance that accepts ions • Alkalosis • Process that adds base or eliminates acid from body fluids

  3. TERMS • pH • Negative logarithm of hydrogen ion concentration in the blood • Normal range-7.35-7.45 (N=7.40) • Inversely proportional to hydrogen concentration • Increase in H ions=low pH (acidosis) • Decrease in H ions=high pH (alkalosis) • Anion gap • Normal=5-15 • Helpful in differential diagnosis of acidosis • Calculated by subtracting anions from cations (Anion gap=Na+K –Cl+HCO3)

  4. TERMS • PaO2 • Partial pressure of O2 dissolved in arterial blood • Normal value= 80-100mmHg • SaO2 • Amount of O2 bound to hemoglobin • 3% of O2 dissolved in plasma • 97% bound to hemoglobin • Normal range-93-100%

  5. TERMS • PaCO2 • Partial pressure of carbon dioxide dissolved in arterial blood • Normal range =35-45mmHg • Regulated in the lungs • Hypoventilation- respiratory acidosis-CO2 retention • Hyperventilation- respiratory alkalosis- CO2 excretion • HCO3 • Concentration of sodium bicarbonate in the blood • Normal range= 22-26mEq • Regulated in the kidneys • Metabolic alkalosis >26mEq • Metabolic acidosis < 22mEq

  6. Oxyhemoglobin Dissociation Curve

  7. Oxyhemoglobin Dissociation Curve • Low paO2 at tissue level (hypoxia)=Shift to right-O2 readily released from the hemoglobin • Acidemia, Hyperthermia, hypercarbia • High PaCO2 at pulmonary capillary level=Shift to left-O2 more bound to hemoglobin • Alkalosis, hypothermia, hypocarbia, high altitude, carcon monoxide poisoining

  8. Acid-Base Regulation • Buffer system • Substance that reacts with an acid or base to prevent a large change in pH • Fast acting and a primary regulator of acid base balance • Can react in two ways • As an acid-releasing H ions • As a base-binding a H ion • Carbonic acid/bicarbonate system H+HCO3=H2CO3=H20+ CO2

  9. Respiratory Mechanism • 2nd line of defense against changes in fluid pH • Under control of the nervous system • Regulates the excretion and retention of carbonic acid • If pH is down-rate & depth of ventilation increased • If pH is up- rate and depth of ventilation is decreased • Rapid action following alteration in acid base balance

  10. Neural regulation of respiration and Hydrogen Ion concentration IncreasedPaCO2 Increased H+ Decreased rate and depth of respiration Inhibition of central chemoreceptors Stimulation of Chemoreceptors Decreased PaCO2 Decreased H+ Increased rate and depth of respiration

  11. Renal Mechanism • 3rd line of defense • Strongest of all mechanisms but takes long to completely respond (24-48 hrs) • Operates on 3 mechanisms • Movement of bicarbonate • Formation of acids • Formation of ammonium

  12. Renal Mechanism • Movement of bicarbonate • When H ions are high-bicarbonates are reabsorbed from the kidneys and back to circulation • When H ions are low-bicarbonates remain in the kidneys and excreted in the urine • Formation of acids • Phosphate (HPO4) draws and combines with H ions into the urine forming an acid (H2PO4) and excreted in the urine • Formation of ammonium • Ammonia (NH3) is secreted in the urine-combines with H ions to form Ammonium (NH4)-excreted in urine

  13. Compensation • Body attempts to correct for the changes in body/blood pH • Respiratory system- more sensitive to aci-base changes thus can begin compensation within seconds to minutes • Renal compensation-more powerful but does not get stimulated until imbalance is sustained for several hours to days

  14. Compensation • Respiratory- Rapid • Metabolic acidosis- increase in depth and rate of respiration to blow off CO2-pH returns to normal • Metabolic alkalosis-lungs decrease the rate & depth of respiration-paCO2 returns to normal • Renal • Respiratory acidosis-kidneys increase excretion of H ions or increase reabsorption of bicarbonates-pH returns to normal • Respiratory alkalosis-kidneys reabsorb more H ions or excrete more bicarbonates

  15. Compensation • pH –within normal 7.35-7.45 • HCO3-must be abnormal • pCO2- & HCO3 going in the same direction • Example • pH -7.37 pCO2-60 HCO3- 38

  16. Acid Base Imbalances • Metabolic Acidosis-low pH, low HCO3,K elevated, • Overproduction of H ions • Excessive breakdown of fatty acids-ketoacidosis (DKA & Starvation) releases H ions • Hypermetabolism-lactic acidosis- excessive exercise, seizure, fever, hypoxia • Excessive intake of acid substances-ASA, alcoholic beverages • Under elimination of H ions –kidney failure • Underproduction of bicarbonates-renal/liver failure, dehydration • Overproduction of bicarbonates-but presence of diarrhea

  17. Metabolic Acidosis-Clinical Manifestations • Neurologic- • Headache, drowsiness, confusion, coma • Neuromascular • Decrease in muscle tone and deep tendon reflexes • Respiratory • Deep rapid respirations-Kaussmaul breathing • Cardiovascular • Low BP arrhythmias • Warm flushed skin due to vasodilation • GI • Nausea, vomiting, diarrhea, abdominal pain

  18. Metabolic Acidosis-Interventions • Hydration • Treat or control the causative cause • DKA- hydration & insulin • Diarrhea-rehydration & antidiarrheals • Bicarbonate is administered only if serum bicarbonate levels are low

  19. Acid Base Imbalances • Respiratory Acidosis-low pH, high pCO2, K • Retention of CO2 • Respiratory depression • Anesthesia, drugs, trauma, neurologic disease, • Inadequate chest expansion • Skeletal deformities, muscle weakness, obesity, tumor • Airway obstruction • asthma, COPD, bronchiolitis • Reduced alveolar-capillary diffusion • Thrombus, pneumonia, TB, Cystic fibrosis, atelectasis, ARDS,

  20. Respiratory Acidosis- Manifestations • Neurologic • Disorientation, drowsiness, dizziness, headache, coma • Respiratory • hypoventilation • Cardiovascular • Low BP, arrhythmias • Neuromascular • seizures

  21. Respiratory Acidosis-Interventions • Maintain patent airway, enhance gas exchange, adequate oxygenation • Pulmonary hygiene-positioning breathing techniques • Ventilatory support • Prevention of complications • Drug therapy aimed at • Increasing diameter of airways • Induce relaxation • Increase bronchodilation • Thin secretions

  22. Combined Respiratory & Metabolic Acidosis • Can occur simultaneously • Leads to anaerobic metabolism and lactic acidosis • Acidosis more profound than that caused by respiratory or metabolic acidosis • May lead to cardiac arrest

  23. Acid Base Imbalances • Metabolic Alkalosis-high pH hallmarked by an increased in bicarbonate and rising paCO2, low K & Ca • Base excess • Ingestion of bicarbonates, acetates, citrates, and lactates • Acid deficit • Prolonged vomiting, Cushing’s syndrome, Thiazide diuretics, prolonged NGT suctioning

  24. Metabolic Alkalosis-Manifestations • Neurologic • Dizziness, irritability, nervousness, confusion • Respiratory • Hypoventilation-a compensatory action • Cardiovascular • Tachycardia, arrhythmia related to low K • Neuromascular • Tetany, tremors, tingling of fingers & toes, hypertonic muscles, cramps & seizures • GI • Anorexia, nausea & vomiting

  25. Metabolic Alkalosis-Interventions • Restore normal fluid & electrolyte balance • Drug therapy to restore electrolyte balance • K sparing diuretics • Antiemetics • Avoid administration of alkaline substances-Na Bicarbonate or antacids

  26. Acid Base Imbalances • Respiratory Alkalosis-high pH, low bicarbonate, low PaCo2,low K & Ca • Co2 level is so low because of hyperventilation • Direct stimulation of respiratory center due to fever, compensation for metabolic acidosis, CNS lesions, drugs, pain • ventilation settings too high or fast • Anxiety, fear

  27. Respiratory alkalosis-Manifestations • Neurologic • Light headedness, lethargy, confusion • Respiratory • Hyperventilation- lungs cannot compensate for the respiratory problem • Cardiovascular • Tachycardia, arrhythmias • Neuromascular • Numbness, tetany, tingling of extremity, • Hyperflexia, seizures • GI • Nausea, vomiting, epigastric pain

  28. Respiratory alkalosis-Interventions • Monitor for indications of respiratory failure • Use rebreather mask • Provide mechanical ventilatory support • Reduce O2 consumption to minimize hyperventilation-reduce fever, pain, anxiety and promote comfort • Monitor labs-ABGs, lytes

  29. Arterial Blood Gases • Provides acid-base status • Provides information on the origin of the imbalance • Provides an idea of body’s ability to regulate pH • Provides reflection of overall oxygenation status • Finding interpreted in conjunction with patient clinical history, physical assessment, and previous ABG

  30. Steps in determining ABGs • 1)Determine if pH is acidotic or alkalotic • 2)Analyze the pCO2 to determine respiratory acidosis or metabolic. CO2 is controlled by the lungs, • high CO2=acidosis, low CO2 =alkalosis • 3)Analyze HCO3 to determine metabolic acidosis or alkalosis. HCO3 is the metabolic component controlled by the kidney • high HCO3=alkalosis, low HCO3=acidosis • 4)Determine if CO2 or HCO3 matches the acid or base alteration of pH. • If pH is acidotic and CO2 is high=respiratory acidosis • .If pH and HCO3 high= metabolic acidosis • 5)Decide if the body is attempting to compensate for the pH change

  31. Normal Blood Gas Values

  32. What acid-base disorders are represented by the following arterial blood tests • pH pCo2 HCO3 • 7.18 68 28 • 7.56 50 32 • 7.21 51 19 • 7.32 49 22 • 7.50 22 29 • 7.49 32 31 • 7. 37 57 17

More Related