Download
project ieee p802 15 working group for wireless n.
Skip this Video
Loading SlideShow in 5 Seconds..
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) PowerPoint Presentation
Download Presentation
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

172 Views Download Presentation
Download Presentation

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [CRL Consortium’s Soft-Spectrum proposal for IEEE 802.15.3a] Date Submitted: [5 May, 2003] Source: [Ryuji Kohno, Honggang Zhang, Hiroyo Ogawa] Company [(1) Yokohama National University, (2) Communications Research Laboratory, (3) Communications Research Laboratory ] Connector’s Address [3-4, Hikarino-oka, Yokosuka, 239-0847, Japan] Voice:[+81-468-47-5101], FAX: [+81-468-47-5431], E-Mail:[ kohno@crl.go.jp, honggang@crl.go.jp, hogawa@crl.go.jp] Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15-02/327r7] Abstract: [Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping are proposed, which are suitable for co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate. Our proposed Soft-Spectrum Adaptation (SSA) is able to be introduced in either single-band or mutiband implementations. Local sine template receiving scheme is also investigated for Soft-Spectrum UWB impulse radio.] Purpose: [For investigating the characteristics of High Rate Alternative PHY standard in 802.15TG3a, based on Soft-Spectrum adaptation, pulse waveform shaping and local sine template receiving] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  2. CRL Consortium’s Soft-Spectrum Proposal for IEEE 802.15.3a Ryuji KOHNO Honggang ZHANG , Hiroyo OGAWA Communications Research Laboratory (CRL) and CRL-UWB Consortium R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  3. R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  4. Advantest Corporation Takahiro YAMAGUCHI Tasuku TESHIROGI Anritsu Corporation Hideaki ISHIDA CASIO Computer Co., Ltd. Hiroyo OGAWA Communications Research Laboratory Communications Research Laboratory Tetsuya YASUI Communications Research Laboratory Toshiaki MATSUI Akifumi KASAMATSU Communications Research Laboratory Honggang ZHANG Communications Research Laboratory Tomohiro INAYAMA Fuji Electric Co., Ltd. Toshiaki SAKANE Fujitsu Limited Youichi ISO Furukawa Electric Co., Ltd. Yoshinori OHKAWA Hitachi Cable, Ltd. Hitachi Kokusai Electric Inc. Masatoshi TAKADA Members of CRL Consortium R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  5. Satoshi SUGINO Matsushita Electric Works, Ltd. Yoshiaki KURAISHI NEC Engineering, Ltd. NTT Advanced Technology Corporation Makoto YOSHIKAWA Omron Corporation Toru YOKOYAMA Oki Electric Industry Co., Ltd. Yoshihito SHIMAZAKI Oki Network LSI CO., Ltd. Masami HAGIO Takehiko KOBAYASHI Tokyo Denki University Kiyomichi ARAKI Tokyo Institute of Technology Jun-ichi TAKADA Tetsushi IKEGAMI Tokyo Institute of Technology Meiji University Hiroyuki NAGASAKA Samsung Yokohama Research Institute SANYO Electric Co., Ltd. Sumio HANAFUSA Ryuji KOHNO Yokohama National University Eishin NAKAGAWA Telecom Engineering Center Members of CRL Consortium (cont) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  6. Outline of Presentation • Why Soft-Spectrum UWB for IEEE 802.15.3a WPANs • Soft-Spectrum UWB PHY system architecture • Link budget and supported data rates • Multiple access techniques and performance • Coexistence and narrowband interference mitigation • Multipath mitigation techniques and performance • Implementation feasibility • Summary • Backup materials R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  7. Why Soft-Spectrum UWB for IEEE 802.15.3a WPANs? • Philosophy of Soft-Spectrum Adaptation (SSA) with flexible pulse waveform and frequency band design  free-verse pulse waveform shaping  geometrical pulse waveform shaping • Interference avoidance and co-existence for harmonized, global implementation  SSA can flexibly adjust UWB signal spectrum so as to match with spectral restriction in transmission power, i.e. spectrum masks in both cases of single and multiple bands. • Scalable, adaptive performance improvement • Smooth system version-up similar to Software Defined Radio R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  8. Considering the whole frequency bands from DC to 15 GHz, in regard of the FCC Spectrum Mask • The maximum emission power is limited to –80dBm/MHz (whole bands) • Frequency efficiency is extremely worse What’s the solution? (I) Pulse domain (II) Spectrum domain What we want to do ? • Giving spectrum freedom  Flexible spectrum design • Giving waveform freedom  Flexible pulse waveform design • Giving system freedom  Maintaining exchangeability with existing and coming UWB systems R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  9. Basic philosophy  Soft-Spectrum Adaptation • Pulse design corresponding to required bandwidths • Flexible and adaptive spectrum , even if regional spectral mask is changed Soft-Spectrum Adaptation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  10. Basic Formulation Example of Pulse Generator B:bandwidth [f H ~f L] Feasible Solution: Pulse design satisfying Spectrum Mask • Divide (spread-and-shrink ) the whole bandwidth into several sub-bands Soft Spectrum (spectrum matching) • Pulse synthesis  M-ary signaling N division R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  11. Robustness to MAI Pulse width of 10 ns Frequency characteristics Pulse width Tread-off Pulse width of 3 ns R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  12. Soft-Spectrum UWB PHY System Architecture R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  13. Soft-Spectrum Processing Bank UWB Antenna Data in Pulse Shaping Filter (BPF) Soft-Spectrum Pulse Waveform Generator (1) AWGN Channel (2) Multi-path Fading Channel Soft-Spectrum Keying (Modulator) Power Amplifier Base-band Data Procession Unit Control/Timing in (1010110….) Example of Soft-Spectrum UWB Transmitter Block Diagram R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  14. Soft-Spectrum Processing Bank Soft-Spectrum Template Generator Soft-Spectrum Pulse Multiplier Soft-Spectrum Pulse Integrator Soft-Spectrum Keying Demodulator Base-band Data Processing Unit BPF LNA VGA UWB Antenna Information Data Out (1010110…) Acquisition + Channel Estimation Example of Soft-Spectrum UWB Receiver Block Diagram R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  15. Various Pulse Waveforms Generated by Soft-Spectrum Processing Bank (I)Free-Verse Soft-Spectrum Pulses (II)Geometrical Soft-Spectrum Pulses R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  16. K-1Free-Verse Soft-Spectrum Pulse K-2Free-Verse Soft-Spectrum Pulse (Dual-cycle) (Note: several band notches happen) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  17. time frequency K-3 Free-Verse Soft-Spectrum Pulse (Note: band notches clearly happen at 2.4 and 5 GHz as well) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  18. K-4 Free-Verse Soft-Spectrum Pulse (Note: pulse waveform has more freedom) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  19. 1 0.8 1 0.6 0.8 0.4 0.6 0.2 0.4 0 0.2 -0.2 0 -0.4 -0.2 -0.6 -0.4 -0.8 -0.6 1 0.8 0.6 0.4 0.8 0.2 0.6 0 0.4 0.2 -0.2 0 -0.4 -0.2 -0.6 -0.4 -0.8 -0.6 -0.8 Triangular-type envelope Exponential-type envelope Cosine-type envelope Gaussian-type envelope Geometric Soft-Spectrum pulse waveforms with various envelopes R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  20. Example of band allocation in Soft-Spectrum multi-band Approach Soft-Spectrum UWB multi-band signals (Cosine-type envelope) 0 1.5 -2 -4 1 -6 -8 0.5 -10 Amplitude (dB) Amplitude 0 -12 -14 -0.5 -16 -18 -1 -20 3 3.5 4 4.5 5 5.5 6 -1.5 Frequency(GHz) 0 50 100 150 200 250 300 350 Time(Samples) Adaptive, controllable spread-and-shrink of frequency bandwidths is feasible, according to the actual interference environment and the spectrum requirements Soft-Spectrum adaptation philosophy as mentioned before R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  21. Spectrum overlapping and possible interference with WLAN (802.11a) Do not use overlapping frequency bandwidth causing possible interference Example of interference avoidance and co-existence using flexible geometric Soft-Spectrum pulse transmission R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  22. 1 0.8 Exchangeable 0.6 0.4 Free-Verse pulse Geometrical pulse 0.2 0 -0.2 5 GHz W-LAN -0.4 Harmonized with each through -0.6 Power  Spectrum 1 4 5 6 8 9 10 11 2 3 7 F Dual- or three-band Multi-band Soft-Spectrum Adaptation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  23. Modulation, Supported Data Rate and Link Budget Soft-Spectrum Keying R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  24. Soft-Spectrum Keying Modulation and Coding Scheme • Modulation schemes (Inner-keying) : QPSK and BPSK • Modulation schemes (Outer-keying) : M-ary Pulse Shape and Sequence Modulation (PSSM) • Coding Schemes: Viterbi K=7, Rate ½, ¾ • Pulse Guard-Intervals defined to allow • Improved multiple access • Improved ISI mitigation • Improved receiving energy capture R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  25. 001 010 ••• 000 t 101 110 ••• 100 t Soft-Spectrum Keying  Transmit 2 bits by using BPSK/QPSK modulation in each Soft-Spectrum pulse (Inner-keying)  Transmit other more bits by defining different Soft-Spectrum pulse shapes and sequences (Outer-keying) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  26. f1 1~3 ns Guard Interval (adaptive) Pulse Time f2 t Soft-Spectrum Keying t f3 t  Guard-Interval is used for mitigating multipath fading effects, improving multiple access performance, and inter symbol interference (ISI) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  27. Supported data rate of Soft-Spectrum adaptation scheme (only Inner-keying, 5 modes) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  28. Supported data rate of Soft-Spectrum adaptation scheme (Inner-keying and Outer-keying) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  29. Hard-Spectrum Soft-Spectrum Duty Cycle (PRF) High Low Frequency Bands One Multiple sub-bands Processing Gain (per sub-band) Multiple pulses per bit One or more bits per pulse PRF (per sub-band) Raw bit rate*pulses per bit Raw bit rate/bits per pulse / No. of sub-bands Comparisons of Hard-Spectrum (Mono-Band) and Soft-Spectrum (Soft-Band) impulse radio transmissions R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  30. Parameter Value Value Throughput (Rb) 110.5Mbps 224.3Mbps P T - 7.8dBm - 7.8dBm Average Tx power ( ) G T 0 dBi 0 dBi Tx antenna gain ( ) = ' f f f c min max 3.6GHz 3.6GHz • one of typical center frequencies of Soft-Spectrum lower sub-bands = p ' L 20 log ( 4 f / c ) 1 10 c 43.6dB 43.6dB Path loss at 1 meter ( ) = * 8 c 3 10 m/s = L 20 log ( d ) 2 10 20 dB at d =10 12 dB at d =4 Path loss at d m ( ) meters meters G R 0 dBi 0 dBi Rx antenna gain ( ) = + + - - P P G G L L R T T R 1 2 - 71.4dBm - 63.4dBm Rx power ( (dB)) Average noise power per bit - 93.6dBm - 90.5dBm = - + N 174 10 * log ( R ) 10 b ( ) Rx Noise Figure Referred to the Antenna 7.0dB 7.0dB N F Terminal ( ) = + P N N N F - 86.6dBm - 83.5dBm Average noise power per bit ( ) Minimum E /N ( S ) 6.5dB 7.2dB b 0 Implementation Loss (I) 3dB 3dB = - - - M P P S I R N 5.7dB 9.9dB Link Margin ( ) dBm dBm Proposed Min. Rx Sensitivity Level - 77.1 - 73.3 Link Budget of Soft-Spectrum Adaptation Scheme R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  31. (I) Multiple Access Techniques and Performance (II) Coexistence and Narrowband Interference Mitigation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  32. B: Free-Verse pulse (K-1) Transmitted data 10000bits Frame/Slot  10ns/8 Users 5, 10 TH Sequence Gold Sequence Modulation PPM (Asyn.) 99% Bandwidth 6.75GHz Pulse width 3ns (A)/0.39ns(B) Channel AWGN Comparisons of Multiple Access Performance R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  33. (1) BER of Soft-Spectrum system while causing interference to other co-existing DS-SS system (2) BER of Soft-Spectrum system while receiving interference from other co-existing DS-SS system Data rate UWB:3.2Mbps      SS:384kbps Bandwidth UWB:3.2GHz   SS:3.4MHz DS-SS chip rate:3.84Mcps DS-SS carrier frequency ωc:2GHz UWB pulse time duration:0.7ns Number of pulses per symbol Ns:31 Pulse repetition time Tf:10ns DIR:-16.66dB Multi-user performance comparisons of the DS-SS and Soft-Spectrum systems R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  34. (1) BER of DS-SS system while Dual-cycle UWB system co-exists (2) BER of Dual-cycle UWB system while DS-SS system co-exists Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-2 Free-Verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  35. (1) BER of DS-SS system while K-3Soft-Spectrum system causing interference (2) BER of K-3Soft-Spectrum system while DS-SS system causing interference Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-3 Free-Verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  36. (1) BER of DS-SS system while K-4Soft-Spectrum system causing interference (2) BER of K-4Soft-Spectrum system while DS-SS system causing interference Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-4 Free-Verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  37. Coexistence with Existing Narrowband System • IEEE 802.11a is the strongest narrowband interferer • Soft-Spectrum coexistence way • Do not use interfered bands for coexistence with IEEE 802.11a WLAN devices •  Channel allocation can be freely, dynamically assigned depending on channel monitoring results and regional regulations R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  38. Coexistence Strategies •  Soft-Spectrum coexistence • Pre-configure device (through software control) not to use a particular band, based on various geographic region and device usage • Allow device to detect presence of NBI and avoid • Device interoperability functions could specify detection requirements to ensure adequate control •  UWB power emitted into 802.11a bands and 4.9 GHz WLAN band in Japan • Avoiding 5.25 GHz (5.8 GHz) band for lower (upper) UNII band coexistence • Avoiding 4.7 GHz band (4.975 GHz using frequency offset channels) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  39. Soft-Spectrum Adaptation Scheme in AWGN and Multipath Fading Environment R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  40. Soft-Spectrum Immunity in Multipath Fading Environment • Decrease inter-pulse interference (ISI) by employing adaptive Guard-Interval • Decrease multipath fading effects by choosing suitable Soft-Spectrum waveforms • Use baseband Pre- and Post-Rake receiver based on designing suitable intra-pulse waveform • Continuous channel measurements are good for changing multipath environment R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  41. Impulse response realizations 0.6 0.4 TX 0.2 0 From transmitter -0.2 RX -0.4 -0.6 -0.8 0 50 100 150 250 200 Time (ns) Indoor multipath fading: Example of indoor UWB impulse radio signal propagation (IEEE 802.15SG3a S-V model: CM1, CM2, CM3, CM4) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  42. Soft-Spectrum UWB transmitted signal (Gaussian-type envelope) 1 0.5 Amplitude 0 -0.5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN (Gaussian-type envelope) 2 1.5 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal 1 0.5 Amplitude 0 -0.5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN 2 1.5 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 0 50 100 150 200 250 300 350 400 Time Various geometrical Soft-Spectrum pulse sequences in AWGN channel R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  43. BER vs. Eb/No performance in the presence of AWGN (Receiver: 2 over-samples) BER vs. Eb/No performance in the presence of AWGN (Receiver: 4 over-samples) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  44. 1 1 0.5 0.5 0 0 -0.5 -0.5 Group Delay 1 0.5 0 -0.5 Geometric Soft-Spectrum pulses Group Delay Geometric Soft-Spectrum inter-pulse interference caused by multipath fading R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  45. 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 Inter-pulse interference effects of multipath fading on various geometric Soft-Spectrum pulse waveforms R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  46. UWB multipath fading signal UWB multipath fading signal 2 2 1.5 1.5 1 1 0.5 0.5 Amplitude Amplitude 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 -2 -2 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800 900 1000 Time Time UWB multipath fading signal+AWGN UWB multipath channel impulse response 3 1.5 2 1 1 0.5 Amplitude Amplitude 0 0 -1 -0.5 -2 -3 -1 0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time Time Geometrical Soft-Spectrum pulse sequences in multipath fading channel (Cosine-type pulse waveform) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  47. Geometrical Soft-Spectrum receiving signal re-sampling (Cosine-type envelope) 1.5 Re-sampling 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Time 100 samples R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  48. 1 0.5 1 0.5 0 Amplitude 0 Amplitude -0.5 -0.5 -1 -1 Timing off-set =0.25, 0.5, 1.0, 1.5 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  49. BER vs. Eb/No performance in the presence of receiver timing off-set (AWGN channel) BER vs. Eb/No performance in the presence of receiver timing off-set (multipath fading channel) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

  50. 1 0.5 0 -0.5 BPF Tc Tc Tc C1(t) C2(t) C3(t) CN(t) Soft-Spectrum Rake Receiver Multipath diversity for geometric Soft-Spectrum intra/inter pulse combining R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium