1 / 38

NTHU Physics Colloquium Current Development and Prospect of New Synchrotron Facilities

NTHU Physics Colloquium Current Development and Prospect of New Synchrotron Facilities 張石麟 (Shih-Lin Chang) March 20, 2013. Outline Introduction High energy synchrotron sources New additions of synchrotron facilities (under construction or recently completed)

upton
Télécharger la présentation

NTHU Physics Colloquium Current Development and Prospect of New Synchrotron Facilities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NTHU Physics Colloquium Current Development and Prospect of New Synchrotron Facilities 張石麟(Shih-Lin Chang) March 20, 2013

  2. Outline • Introduction • High energy synchrotron sources • New additions of synchrotron facilities (under construction or recently completed) • New synchrotron facilities in planning • Free electron lasers (FEL’s) • Prospect & conclusion

  3. 同步加速器光源 超快速電子在磁場中偏轉所產生的電磁波 • 相對論效應使得電子以接近光速作圓周運動時所發射的電磁波集中在切線方向,而不像大哥大產生的電波向四面八方散去。

  4. Synchrotron Radiation • Zeroth generation sources • 1950’s-60’s: Electron synchrotrons (cyclic accelerators) • First generation sources(storage rings) • 1970’s: e+/e- colliders (Mostly parasitic on high energy physics programs) • Second generation sources • 1980’s: New rings and fully dedicated use of e+/e- colliders, use of wigglers & undulators • Third generation sources • 1990’s: Low emittance ring with many straight sections for insertion devices • Fourth generation sources • 2000’s: Linac-based sources • Free-electron laser (FEL) • Energy Recovery Linac (ERL) • Diffraction-limited rings; Ultra-short bunches; New ideas

  5. Bending magnet(偏轉磁鐵) & insertion device(插件) Storing Ring • Bending Magnet • White X-rays • Wide horizontal divergence • 1/g limited vertical divergence • Moderate power • Moderate power density • Wiggler • White X-rays • Moderate horizontal divergence • 1/g Limited vertical divergence • High power • High power density • Elliptically polarized/linearly polarized • Undulator • Quasi-monochromatic X-rays • Small vertical and horizontal divergence (Central Cone) • High power • Extremely high power density • Circularly polarized/ linearly polarized Undulator / Wiggler

  6. Introduction There are now 66 synchrotrons in operation throughout the world. Additional 11 are either under construction or in planning. In addition to 3 high-energy synchrotrons, ESRF, APS, Spring-8, there are several low- and mid-energy 3rd generation synchrotrons. Starting 2000, mid-energy rings have been considered as most economic and yet providing high quality beams (low emittance) for SR experiments Many new 3rd generation synchrotron facilities are now either under construction or in the design process. Free electron lasers

  7. Hsinchu World Map of Synchrotron Facilities

  8. 臺灣光源(TLS)現況 EPU5.6 IASW6-R2 SWLS U5 加速器儲存環 (15億電子伏特) IASW6-R6 U9 SW6 超導高頻共振腔 W20 IASW6-R4 傳輸線 TPS完成後之同步輻射研究中心俯視圖 線型加速器 增能環 (15億電子伏特) • 亞洲第一座第三代同步輻射 • 全球第二座使用超導高頻腔同步輻射 • 全球第三座全時恆定電流運轉設施 • 安裝的超導插件磁鐵數量及密度最高 • ’93年: 4月完成試車;10月開放給用戶實驗 • ’96年: 儲存環能量由1.3GeV提升為1.5GeV • ’00年: 增能環以全能量注射到儲存環 • ’02年: 6T超導移頻磁鐵SWLS正式使用 • ’04年: 液氦低溫與超導增頻磁鐵SW6運轉 • ’05年:啟用超導高頻共振腔 • ’05年:用戶時段施行300mA恒定電流運轉 • ’06年: 1st安裝彎段超導增頻磁鐵IASW-R6 • ’09年:安裝2nd彎段超導增頻磁鐵IASW-R2 • ’10年: 安裝3rd彎段超導增頻磁鐵IASW-R4 • 360 mA恒定電流運轉模式

  9. How is it Practically Produced and Used for Research? The storage ring circulates electrons, where they are bent, synchrotron radiation is produced Klystrons generate high power radio wave to sustain electron acceleration, replenishing energy lost to synchrotron radiation Electron gun produces electrons Wiggler / Undulator insertion devices generate strong x-ray beams Beam lines transport radiation into “hutches”, where instrumentation is available for experiments Linear accelerator/ booster accelerate e- which are transported to storage ring

  10. High energy synchrotron sources

  11. SLAC Stanford Synchrotron Radiation Lightsource (SSRL) – Menlo Park, CA, USA 1973 SSRL began as the Stanford Synchrotron Radiation Project (SSRP) 1974 First user run 1977 SSRP became SSRL 1992 SSRL became fully dedicated synchrotron radiation source 2004 Major upgrade of SPEAR completed - SPEAR3 SSRL / SSRP The first multi-GeV storage ring based synchrotron radiation source in the world ( 2004: 3 GeV, 300-500mA, 234 m.) Aerial View of SSRL. (Courtesy: SLAC) Sources: The SSRL Strategic Plan: 2013 - 2018 http://www-ssrl.slac.stanford.edu/content/beam-lines/map http://www-ssrl.slac.stanford.edu/content/about-ssrl/history-stanford-synchrotron-radiation-lightsource

  12. European Synchrotron Radiation Facility (ESRF) 6 GeV; = 11800; 884m circumference

  13. Advanced Photon Source (APS) – Argonne, IL, USA The Advanced Photon Source (APS) provides the brightest storage ring-generated X-ray beams in the Western Hemisphere to more than 5,000 scientists worldwide. Aerial view of the APS Source: http://www.aps.anl.gov/About/Welcome/ • Sources: • http://www.aps.anl.gov/ • http://www.aps.anl.gov/Beamlines/Beamlines_Map/index.html • APS Upgrade project PDR (December 2012) Beamlines Map

  14. Spring-8 (Super Photon ring-8 GeV) Japan 8 GeV; = 15,700; 1.44 km circumference

  15. New additions of synchrotron facilities (under construction or recently completed)

  16. Existing Third Generation Low- & Medium-EnergySynchrotron Facilities ALS, TLS, ELETTRA, PLS, SLS, CLS, SPEAR3, SOLEIL, Diamond, AS

  17. New Additions of Synchrotron Facilities SSRF, ALBA, PLS-II, CJSRF, HLSL-II, TPS, NSLS-II, MAX-IV, SESAME, SIRIUS

  18. New Additions of Synchrotron Facilities (in planning) ILSF, CANDLE, TAC, LSEJ,Spring-II, BAPS,……….

  19. Shanghai Synchrotron Radiation Facility (SSRF) – Shanghai, China 2009 • 7initial beamlines: • BL17U1 – Macromolecular Crystallography • BL14W1 – XAFS • BL14B1 – Diffraction • BL15U1 – Hard X-ray Micro-focus • BL10W1 – X-ray Imaging and Biomedical Application • BL16B1 – Small Angle X-ray Scattering • BL08U1-A – Soft X-ray Spectromicroscopy • BL08U1-B – X-ray Interference Lithography Accelerator Layout http://ssrf.sinap.ac.cn/english/2/Layout.htm • 6 new beamlines under construction: • Protein Micro-crystallography • Protein Complex Crystallography • High-throughput Protein Crystallography • BioSAXS • Infrared Spectroscopy and Imaging • Dreamline (User funded soft X-ray BL) • (Completion expected in 2013)

  20. Shanghai Synchrotron Radiation Facility (SSRF) – Shanghai, China (continued) • New programs at SSRF: • SSRFPhase II project: • Program to build a big bunch of new beamlines • In preparation and will soon be submitted for approval by the government • Five user funded beamlines: • In design stage • Waiting for approval • Soft X-ray FEL facility (Shanghai Soft-X-ray Free-Electron Laser Test Facility (SXFEL)) • To be built adjacent to SSRF http://ssrf.sinap.ac.cn/english/1/Campus.htm • By 2020, there will be • About 40 beamlinesat SSRF • FEL facility Campus

  21. (ALBA) – Barcelona, Spain 2010 Machine Parameters • Seven beamlines for first phase: • BL04 - MSPD: Materials Science and Powder Diffraction • BL09 - MISTRAL: X-Ray Microscopy • BL11 - NCD: Non-Crystalline Diffraction • BL13 - XALOC: Macromolecular Crystallography • BL22 - CLÆSS: Core Level Absorption & Emission Spectroscopies • BL24 - CIRCE: Photoemission Spectroscopy and Microscopy • BL29 - BOREAS: Resonant Absorption and Scattering • (BOREAS - Available to users on May 7, 2012) http://www.cells.es/Divisions/Accelerators http://www.cells.es/AboutUs

  22. Pohang Light Source II (PLS-II) – Pohang, Korea 2012 http://paleng.postech.ac.kr/ • PLS-II project started in January 2009. • PLS-II was opened to users on March 21, 2012. http://aappsbulletin.org/myboard/read.php?id=40&Page=1&Board=featurearticles&FindIt=&FindText= Future View of PAL with PLS-II and PAL XFEL sites. http://paleng.postech.ac.kr/ Aerial View of PAL http://paleng.postech.ac.kr/

  23. Central Japan Synchrotron Radiation Facility (CJSRF) – Nagoya, Japan 2012 http://www.astf-kha.jp/synchrotron/en/userguide/gaiyou/ Beamline Layout Six beamlines are scheduled for service in 2012: Hard X-ray XAFS Soft X-ray XAFS Soft X-ray to ultraviolet spectroscopy Small angle scattering X-ray diffraction X-ray fluorescence analysis http://www.astf-kha.jp/synchrotron/en/userguide/kougen/ Accelerator

  24. National Synchrotron Light Source II (NSLS-II) – Brookhaven, USA 2014 http://www.bnl.gov/ps/nsls2/about-NSLS-II.asp • Scientific opportunities: • Biology and Soft Matter Science • Chemical Science and Catalysis • Condensed Matter and Materials Physics • Environmental and Heterogeneous Materials Science • Materials Science and Engineering • Nanoscience • Research focus: • Clean and Affordable Energy • Molecular Electronics • Self-assembly • High-Temperature Superconductors

  25. National Synchrotron Light Source II (NSLS-II) – Brookhaven, USA (continued) • Science at NSLS-II: • Hard X-ray Nanoprobe • Coherent X-Ray Scattering • X-Ray Photon Correlation Spectroscopy (XPCS) • Small Angle X-Ray Scattering (SAXS) • Inelastic X-Ray Scattering (IXS) • Soft X-Ray Resonant Scattering: XRMS and RIXS • Soft X-Ray Coherent Scattering and Imaging • Macromolecular Crystallography • High Energy X-Rays • Hard X-Ray Imaging

  26. Taiwan Photon Source (TPS) – Hsinchu, Taiwan 2014 3 GeV, 518.4 m, 500 mA Taiwan Light Source (TLS) Administration and Operation Center Academic Activity Center • Natural emittance: 1.6 nm-rad • Straight sections: 7 m (x 18); 12 m (x 6) • Full capacity: 48 ports 3D Aerial View of NSRRC

  27. Energy 3 GeV (maximum 3.3 GeV) Current 500 mA at 3 GeV (Top-up injection) SR circumference 518.4 m (h = 864 = 25·33 , dia.= 165.0 m) BR circumference 496.8 m (h = 828 = 22·32·23, dia.= 158.1 m) Lattice 24-cell DBA Straight sections 12 m x 6 ( σv = 12 μm, σh = 160 μm) 7 m x 18 ( σv = 5 μm, σh = 120 μm) Bending magnets 48 Emittance 1.6 nm·rad at 3 GeV (Distributed dispersion) Coupling 1 % RF frequency 500 MHz RF gap voltage 2.8~3.5 MV (3 SRF cavities) RF power 750 kW (3 SRF cavities) Location No. 101, Hsin-Ann Road, Hsinchu, Taiwan Building Outer diameter 210 m ; Inner diameter 129 m Taiwan Photon Source (TPS) – Hsinchu, Taiwan (continued) Major Parameters of Taiwan Photon Source

  28. Taiwan Photon Source (TPS) – Hsinchu, Taiwan (continued) TPS & TLS Lattice Diagram

  29. Taiwan Photon Source (TPS) – Hsinchu, Taiwan (continued) Brightness Comparison of TLS and TPS The X-ray spectrum (photon energy 8 keV~70 keV): the brilliance of bending magnet increases by >102. the brilliance of bending IDs increases by 4~6 orders of mag. TLS TPS

  30. Taiwan Photon Source (TPS) – Hsinchu, Taiwan (continued)

  31. TPS Phase I Beamlines • µ-focus macromolecular crystallography(2013)(微聚焦巨分子結晶學光束線) • High resolution inelastic soft-x-ray scattering(2013)(高解析非彈性軟X光散射學光束線) • Sub-µ soft x-ray photoelectron & fluorescence emission (2013)(次微米軟X光能譜學光束線 ) • Coherent x-ray scattering (SAXS/XPCS)(2014)(軟物質小角度散射學光束線) • Sub-µ x-ray diffraction(2014)(次微米繞射光束線光束線) • Nano-probe (2014)(奈米探針光束線) • Temporal coherent x-ray scattering (2014)(時間同調性散射光束線)

  32. Taiwan Photon Source (TPS) – Hsinchu, Taiwan (continued)

  33. 101年10月3日

  34. MAX IV – Sweden 2015 Graphical Overview of MAX IV Project https://www.maxlab.lu.se/sites/default/files/Oversikt_MIV_100226_eng.pdf • Initial MAX IV beamline program: • BioMAX:for macromolecular crystallography • VERITAS:for soft X-ray Resonant Inelastic X-ray Scattering (RIXS) • HIPPIE:for electron spectroscopy • NanoMAX:for micro- and nanobeams • FemtoMAX:to facilitate studies of the structure and dynamics of materials • ARPES:for angle resolved photo electron spectroscopy (ARPES) • XAS:for in-situ hard X-ray spectroscopy • (Start of user operation planned for 2016) https://www.maxlab.lu.se/node/647 Initial MAX IV Beamlines Layout

  35. MAX IV – Sweden (continued) Overview of MAX IV Facility https://www.maxlab.lu.se/node/206 • The future: • Multi-bend achromats • The free electron laser https://www.maxlab.lu.se/about

  36. Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) – Amman, Jordan 2015 SESAME Building http://www.sesame.org.jo/sesame/ Beamline Clock • Phase I beamlines: • Protein crystallography • X-ray absorption fine structure and X-ray fluorescence spectroscopy • Infrared • Powder diffraction • Small and wide angle X-ray scattering • Extreme ultraviolet • Soft X-ray ultraviolet http://www.sesame.org.jo/sesame/images/SESAME_Brochures_and_Posters/X_Proof_Brochure_No07_from_CLD_FINAL.pdf Long-term: Up to 18 further beamlines can be added

  37. Dalian Coherent Extreme-Ultraviolet User Facility – Dalian, China 2015 • Location: Dalian BEST City • Budget: RMB$1.4 billion • Range: 50 – 150 nm • Schedule: • Approval of FEL project: 2011 • Official launch of project: March 2012 • Completion of device: 2015 • After completion, it will be unique in the world of basic science experiment platform.

  38. SIRIUS – Campinas, Brazil 2016 SIRIUS will replace the current source operated by the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas http://www.lnls.br/blog/2011/10/24/sirius-new-brazilian-synchrotron-light-source/ http://www.lnls.br/ • Up to 45 beamlines • The conceptual design of the 13 lines of light began at the end of 2011 CNPEM campus

More Related