1 / 104

Fig.: 4.1

F. D L. F. L. L 0. a. L 0. F. A 0. a. b. F. Fig.: 4.1. Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds .): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition. z. D. y. t. s. yz. s. zz. A. C. t. xz. x.

ursula-dean
Télécharger la présentation

Fig.: 4.1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. F DL F L L0 a L0 F A0 a b F Fig.: 4.1 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  2. z D y t s yz s zz A C t xz x B Fig.: 4.2 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  3. z s zz t t yz xz t zy t zx s t t yy xy yx s xx y x Fig.: 4.3 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  4. Voigt-Kelvin Maxwell Fig.: 4.4 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  5. E E E E i 3 2 1 E ∞ h h h h 1 2 i 3 t t t t 2 1 i 3 Fig.: 4.5 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  6. Ds(t) 1 stress s s(t) 0 Ds(t) 2 e(t) 1 e(t) = e (t) + e (t) strain e 2 1 0 e(t) 2 t t time t 1 2 Fig.: 4.6 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  7. effective range T log E 0 T 1 T 3 T 2 master curve log a T log (t) log (t ) log t 0 Fig.: 4.7 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  8. b a 2 1 s s stresss stresss F S straine straine a) b) 1 – nominal (engineering) stress – strain curve 2 – true stress – strain curve Fig.: 4.8 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  9. s = const. e = const. 0 0 strain e stress s stress s time t time t time t e (t) strain e s (t) time t Fig.: 4.9 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  10. e e (t) 0 s 0 s (t) stress s strain e time t 1/f d/w Fig.: 4.10 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  11. i * E E’’ d j E’ Fig.: 4.11 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  12. 4 3 2 1 1 2 3 a b 1 – prismatic specimen 2 – clamping device 3 – oscillating weight 4 – counterweight Fig.: 4.12 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  13. Dl 0 deflection Dl An+1 An time t 0 1/f Fig.: 4.13 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  14. 1 max Df i 0.707 amplitude A/A 0 f i frequency f Fig.: 4.14 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  15. textile filaments clamp to amplifier specimen specimen to amplifier from generator from generator method A method B Fig.: 4.15 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  16. 10 10 glassy state rubber-elastic plateau glass transition flow region 8 10 6 10 1 10 E‘‘ (Pa) E‘ (Pa) 4 10 0 10 tan d 2 10 -1 10 a g b t t t log t Fig.: 4.16 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  17. 1 10 10 10 0 10 8 10 tan d E‘‘ (Pa) E‘ (Pa) -1 10 6 10 -2 4 10 10 -50 50 150 -150 -100 0 100 T T g b T (°C) Fig.: 4.17 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  18. 10 10 effective range master curve 0.1 ... 50 Hz T = 25 °C 0 9 10 T = 0 °C Arrhenius-plot 15 8 E‘ (Pa) 10 T ln (a ) 5 -5 7 10 -1 DH = 430 kJ mol -15 3.1 3.3 3.5 3.7 1/T (1000/K) 6 T = 50 °C 10 -6 -4 -2 0 2 4 6 10 10 10 10 10 10 10 f (Hz) Fig.: 4.18 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  19. increasing crosslink density increasing crystallinity log E‘ increasing molecular weight T Fig.: 4.19 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  20. 10 10 PB 9 PS 10 SBR 8 10 SBS E‘ (Pa) 7 10 6 10 5 10 3 2 tan d 1 0 -150 -100 -50 0 50 100 150 200 250 T (°C) Fig.: 4.20 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  21. a s e s c b s s e 0 0 0 e e t t 0 Fig.: 4.21 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  22. s s s b c a pure retardation without influence of time pure relaxation e s e e e s d with influence of time s e e Fig.: 4.22 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  23. 4 4 10 10 a b PS PVC PS PS-HI PVC 3 PS-HI 10 3 10 E (MPa) E (MPa) t t PE-HD PE-HD PE-LD PE-LD 2 2 10 10 2 -2 0 3 4 1 -1 -4 -3 -40 -20 20 40 0 60 10 10 10 10 10 10 10 10 10 T (°C) t (s) Fig.: 4.23 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  24. cross-head A 01 0 cross-section DL s (t) L 0 h L 0 02 b L DL z 0 traverse path DL y D x L F v T F x DL (x) L DL t t = 0 1 DL DL (t) 2 DL 3 DL 4 DL(t)= DL + DL + DL + DL 4 3 2 1 Fig.: 4.24 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  25. normative strain rate of dumb- bell specimen 0 n ormative = nominal strain L L rate of prismatic specimen average nominal strain rate of dumbbell specimen DL -1 e (s ) F Fig.: 4.25 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  26. 1A 1B 1BA 5A 2 5 4 b 1 0 1 2 3 l l l L L 1BB 5B r d b 2 Fig.: 4.26 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  27. b a b s F 0 2 2 e b s = f(e) e = f(e) q1 q 1 2 DF s (MPa) F (N) b (mm) 1 e (%) Db = b - b q s b e F 1 q2 2 1 DL – DL DL – DL 02 01 02 01 s F 0 v DL DL DL DL DL 02 02 01 01 v DL (mm) DL (mm) 0 0 e e e e e 2 2 0 1 1 e (%) e (%) Fig.: 4.27 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  28. a s = s B M s = s B M s y b s (MPa) s = s c y M s B d s = s B M s x s B e e = e e = e e x B B M M e = e y M e e (%) y e e tB tB e = e tB tM e (%) t Fig.: 4.28 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  29. e e e e e t t s M s = s s y M B s = s e s y M y y s s (MPa) B e or e (%) t Fig.: 4.29 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  30. 125 a T decreasing e increasing 100 75 s (MPa) 50 125 b 25 100 0 0 50 100 150 200 75 s (MPa) e (%) 50 25 Fig.: 4.30 0 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition 0 50 100 150 200 e (%)

  31. a elongation without necking elongation with necking s (MPa) 1 2 3 4 5 6 7 s = f (e) 1 linear-elastic region 2 linear-viscoelastic region 3 non-linear viscoelastic region necking region 4 steady-state plastic yielding 5 strain-hardening region 6 ultimative failure ─ fracture 7 b e (%) D e = f (e) e (%/min) e defect density Q t Q = f (e) D e (%) Fig.: 4.31 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  32. l e l 2 l m m 1 b b r 2 b l 1 l red L Fig.: 4.32 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  33. 1.5 100 1.5 a b e = f (e) 1.2 80 1.2 e = f (e) e t 0.9 60 e (%/min) 0.9 s (MPa) s = f (e) e (%/min) s = f (e) 0.6 40 0.6 0.3 20 0.3 0 0 0 0 2 4 6 8 10 0 3 6 9 10 12 e (%) e (%) Fig.: 4.33 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  34. 100 a 90° R19 notch R12.7 120 R25.4 clamp mark 28.4 27 notch 50 b 25 15° 75° 25 25 Fig.: 4.34 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  35. 14 a b F F 12 max 10 8 F (N) 6 4 parallel perpendicular to the processing direction 2 v T 0 F 0 10 20 30 40 Dl (mm) Fig.: 4.35 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  36. z y x upper pressure plate F A 01 0 cross-section DL s (t) 02 DL 0 d L L b A = b d 0 F F lower pressure plate traverse path DL= DL − DL 01 02 Fig.: 4.36 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  37. tube cylinder prism x y z l l l d d d b i d a 4 p p 3 d b d 4 4 (d − d ) I = I = I = y a i y y 64 12 64 2 p p d 2 2 (d − d ) A = b d A = A = a i 0 4 0 0 4 4 4 (d − d ) l d l d l a i l = l = l = 2 2 4 4 3.46 (d − d ) a i Fig.: 4.37 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  38. 80 a 50 10 c b 10 10 50 4 10 4 Fig.: 4.38 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  39. sM sB sy b sM=sB c s (MPa) sM=sB a d sx eB eM = eB eM eM = eB ex ey e (%) ecB ecM ecy ecM = ecB ec (%) Fig.: 4.39 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  40. PS compression test sy s (MPa) sM shear bands PS tensile test crazes e (%) eM = eB ey Fig.: 4.40 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  41. a b bending jaw anvil F variable radii specimen specimen F support positioning slide L/3 v v T T l l l traverse L traverse a a b bending moment Mb M b Mb M max F M Q = max transverse force Q 2 Q = 0 F Q = F F 2 Q = + Q = + Q 2 2 Q F l F L a M = M = max 2 max 4 Fig.: 4.41 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  42. a z h F EI y y f b L/2 c b -s z z -e z max max y y y h h x x x t +s +e t max max max Fig.: 4.42 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  43. a F deflection sensor anvil f v support T traverse b F fork sensor anvil f v support T traverse Fig.: 4.43 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  44. a 4 10 80 b b B h length direction of the product (processing direction) D b C A h h b b h width direction of the product Fig.: 4.44 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  45. sfM=sfB a sfM b sfB sfC c s (MPa) sx f ex efB efM efB ef (%) fB fB fC fM f (mm) Fig.: 4.45 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  46. 200 s (MPa) PP/GF 180 f 50 wt.-% 160 140 40 wt.-% 120 100 30 wt.-% 80 20 wt.-% 60 10 wt.-% 40 0 wt.-% 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 ef (%) Fig.: 4.46 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  47. CHARPY arrangement IZOD arrangement impact direction F anvil F anvil impact direction support specimen support span specimen support Fig.: 4.47 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  48. 1.6 b 1.2 -2 40 a A PVC Nylon a (kJ m ) 0.8 iN D B 30 0.4 C -2 0.0 POM -1 -2 0 a (kJ m ) 10 10 10 20 cN r (mm) ABS PMMA 10 0 0 1 10 10 r (mm) Fig.: 4.48 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  49. 500 a  a 400 cN cN a 2 1 cN 1 300 F (N) a cN 2 200 100 0 0.0 0.5 1.0 1.5 2.0 2.5 f (mm) Fig.: 4.49 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

  50. Fig.: 4.50 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

More Related