1 / 10

A kinetic-energy budget of the windstorm « Klaus » (January 24, 2009)‏

G. Rivière, A. Joly CNRM/GAME, Météo-France/CNRS. A kinetic-energy budget of the windstorm « Klaus » (January 24, 2009)‏. Presentation of « Klaus » and its damages. Trajectory . Image from Meteosat 9 (01/24/2009, 06 UTC). 0 50 80 100 120 140 160 180 200 km/h. Wind speed maximum.

varsha
Télécharger la présentation

A kinetic-energy budget of the windstorm « Klaus » (January 24, 2009)‏

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. G. Rivière, A. Joly CNRM/GAME, Météo-France/CNRS A kinetic-energy budget of the windstorm « Klaus » (January 24, 2009)‏

  2. Presentation of « Klaus » and its damages Trajectory Image from Meteosat 9 (01/24/2009, 06 UTC) 0 50 80 100 120 140 160 180 200 km/h Wind speed maximum • Strongest windstorm in France since Christmas 1999 storms « Lothar » and « Martin ». • « Klaus » hit Southwestern France as well as Northern Spain. Trajectory close to the second storm of 1999 « Martin ».

  3. Comparis° between « Klaus » & « Martin » (Dec 26, 1999)‏ Data: operational analysis of the 4DVAR Météo-France ARPEGE system Shading: low-freq (>6d) wind speed (300 hPa)blue: high-freq (<6d) relative vorticity (300 hPa)black: high-freq (<6d)relative vorticity (900 hPa) « Klaus » « Martin » • Even though they have similar trajectories, the timing of the interaction with upper-level structures is quite different. • High-frequency disturbances have a barotropic structure over the whole troposphere at 25°W for « Klaus » and at 0°W for « Martin »

  4. « Klaus » « Martin » EKE (500-900 hPa) Baroclinic conversion Rel vor maximum (900 hPa) For « Klaus », the baroclinic interaction occurs 18H before reaching the coasts whereas for « Martin », this happens at the same time.

  5. At the end of the life cycle of « Klaus », a large part of the high-freq kinetic energy is redistributed south of the vortex maximum ! High-freq kinetic-energy redistribution within “Klaus” Blue: HF wind speed : LF wind speed: HF wind speed total wind speed shading: LF wind speed Shading: total wind speed

  6. Decomposition similar to Orlanski and Katzfey (1991) and Rivière and Joly (2006) Pressure Work Residu Reynolds stress Horizontal and vertical ageostrophic geopotential fluxes Internal baroclinic conversion High-frequency kinetic-energy budget Each variable decomposed into a high- (primes) and low- (subscript m) frequency part High-frequency kinetic energy per unit mass (EKE)

  7. Kinetic-energy budget (18 UTC Jan 23, 500-900hPa) Internal convers° + vert ageos fluxes Horizontal ageostrophic geop fluxes Rel Vor (900hPa) Pressure Work Pressure Work+Reynolds stress • The pressure work dominates over the Reynolds stress term • Horiz ageos geopotential fluxes redistribute EKE southwestward

  8. Kinetic-energy budget (06 UTC Jan 24, 500-900hPa) Internal convers° + vert ageos fluxes Horizontal ageostrophic geop fluxes Rel Vor (900hPa) Pressure Work Pressure Work+Reynolds stress • The pressure work dominates over the Reynolds stress term • Horiz ageos geop fluxes redistribute EKE south of the vortex and are the only term that may explain EKE increase south of it !

  9. Vertical cross section of the ageostrophic vertical geopotential fluxes zonal average in a band of longitude 10° centred on the vortex • Ageostrophic vertical geopotential fluxes tend to redistribute EKE downward from 500 hPa to 900 hPa !

  10. Meteosat infrared image Existence of multiple bands of cold air within the cloud head (similar to sting jets properties) Conclusions / outlook • Strong winds at the end of « Klaus » life cycle are due to a favorable combination of low-freq westerlies and high-freq kinetic-energy redistribution south of the system. • Horizontal and vertical ageost geop fluxes tend to redistribute within the system eddy kinetic energy southward and downward !!! • Is this EKE redistribution by ageost geop fluxes a synoptic-scale feature of a sting jet ? • Confirmation of the results by looking at other data (e.g., ecmwf)

More Related