1 / 20

Pertemuan 7 Ketidakpastian dalam Rules

Pertemuan 7 Ketidakpastian dalam Rules. Matakuliah : H0383/Sistem Berbasis Pengetahuan Tahun : 2005 Versi : 1/0. Learning Outcomes. Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Memilih suatu metode untuk mengatasi ketidakpastian pada rule based systems. Outline Materi.

Télécharger la présentation

Pertemuan 7 Ketidakpastian dalam Rules

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pertemuan 7Ketidakpastian dalam Rules Matakuliah : H0383/Sistem Berbasis Pengetahuan Tahun : 2005 Versi : 1/0

  2. Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Memilih suatu metode untuk mengatasi ketidakpastian pada rule based systems

  3. Outline Materi • Sebab Ketidakpastian • Certainty Factor • Fuzzy Logic

  4. Ketidakpastian Sebab ketidak pastian: • Informasi partial • Informasi not fully reliable • Representation languages is inherently imprecise • Info come from multiple sources and conflict. • Info is approximate. • Non absolute cause effect relationship exists.

  5. Certainty Factor • Certainty Factor = Measure of Belief - Measure of Disbelief • CF[P,E] = MB[P,E] – MD[P,E] • P=probability • E= evidence

  6. Certainty Factor • If inflation is above 5% (CF=50%) and if unemployment rate is above 7% (CF 70%) and if bond prices decline (CF=100%) then stock prices decline. • CF = min CF(A,B,C). Then stock prices decline( CF = 50%). • OR- maximum CF(A,B,C)

  7. Certainty Factor R1 If the inflation rate is less than 5% then stock market price goes up (CF1=0.7) R2 If unemployment is less than 7% then stock market price goes up (CF2 = 0.6) • CF (R1,R2) = CF1 + CF2[1-CF1] = 0.88

  8. Fuzzy Logic • Generalisasi logika (tidak hanya 1/0) • Aplikasi penting: Sistem Pengaturan • Keuntungan: • Pengaturan Lebih “smooth” dari sekedar ON/OFF • Tidak memerlukan model matematika • Kekurangan: • Stabilitas sistem tidak terdefinisi secara eksakta.

  9. Fuzzy Logic Membership function dari usia µ(x) : membership function µ(15) = 1/muda + 0/dewasa +0/tua µ(24) = 0,6/muda + 0,4/dewasa +0/tua µ(40) = 0/muda + 1/dewasa +0/tua

  10. Fuzzy Logic Operasi Logika Fuzzy µA(x) AND µB(y) = minimum(µA(x) , µB(y)) µA(x) OR µB(y) = maximum(µA(x) , µB(y)) NOT µA(x) = 1 - µA(x) µA(x) = 0.7, µB(y) = 0.5 µA(x) AND µB(y) = 0.5 µA(x) OR µB(y) = 0.7 NOT µA(x) = 1 – 0.7 = 0.3

  11. Fuzzy Logic IF suhu = dingin THEN aruslistrik = kecil IF suhu = normal THEN aruslistrik = sedang IF suhu = panas THEN aruslistrik = besar

  12. Fuzzy Logic

  13. Fuzzy Logic • Fuzzy Control e(t) U(t) Regulator de(t)/dt

  14. Fuzzy Logic • Fuzzy Control Rule Base Fuzzy Reasoning (Inferensi) defuzzification Fuzzification

  15. e de u Fuzzy variable -1000 -500 -200 -5 -800 -400 -160 -4 -600 -300 -120 -3 NB PB NK NOL PK -400 -200 -80 -2 -200 -100 -40 -1 0 0 0 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 200 100 40 1 400 200 80 2 600 300 120 3 800 400 160 4 1000 500 200 5 Fuzzy Logic • Fuzzy Position Control

  16. Fuzzy Logic • If e is PB & de is any THEN u is PB • If e is PK & de is NOL THEN u is PK • If e is PK & de is PK THEN u is PK • If e is NOL & de is PK THEN u is NOL • If e is NOL & de is NK THEN u is NK • If e is NK & de is NK THEN u is NK • If e is NB & de is any THEN u is NB

  17. NB PB NK NOL PK -5 -4 -3 -2 -1 0 1 2 3 4 5 Fuzzy Logic • Resoning w. Fuzzy Logic e de

  18. Fuzzy Logic • e= 0.8/NB + 0.2/NK (dari gambar) • de=0.4/NB + 0.6/NK • If e = NB and de = any THEN u=NB • If e = NK and de = NK THEN u=NK • If e = 0.8/NB and de = 0.4/NB THEN u=0.4NB • If e = 0.2/NK and de = 0.6/NK THEN u=0.2/NK

  19. NB PB NK NOL PK -5 -4 -3 -2 -1 0 1 2 3 4 5 Fuzzy Logic • Defuzzyfication (center of area method)

  20. Penutup • Merepresentasikan bahasa verbal manusia ke dalam suatu simbol logika dapat mengakibatkan ketidakpastian. • Certainty Factor dan Fuzzy Logic dapat mengatasi ketidakpastian dalam rule-based systems

More Related