1 / 93

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers . Heng Hao (SISSA) Martin Elvis (CFA) and COSMOS Team INAF-OABO Seminar 2012-10-25 . 10%. 90%. Outline. Introduction: Definition and Important Questions XMM-COSMOS SEDs

vondra
Télécharger la présentation

Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Type 1 AGN SEDs in the COSMOS A Single Form, Mixing Diagram, and Outliers Heng Hao (SISSA) Martin Elvis (CFA) and COSMOS Team INAF-OABO Seminar 2012-10-25 10% 90%

  2. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

  3. 49 yrs ago, in 1963First Quasar: 3C 273 by Maarten Schmidt 3C 273: z = 0.1583 Furthest quasar now: z = 7

  4. Unified Model Two types of AGNs According to Optical Emission Lines: 1.Type 1 AGNs: broad emission lines generally unobscured by gas and dust 2.Type 2 AGNs: narrow emission lines only generally heavily abscured According to power of nuclei: Quasars Seyferts 1995 SED Ref for other type of AGNs: LLAGN: Ho 1999 Red quasar: Young+2008 3) …

  5. IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips Wavelength Ordered Strips from Peter Capak

  6. Wavelength Ordered Strips IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips from Peter Capak

  7. z K NB816 IB827 IRAC1 IRAC2 IRAC3 IRAC4 IRAC u B g V r i z K 1 2 3 4 IB427 IB565 IB505 IB574 IB709 NB711 NB816 IB827 24um Wavelength Ordered Strips Wavelength Ordered Strips from Peter Capak

  8. (Elvis, Hao + 2012) SED Example K H J GALEX MIPS IRAC Subaru SDSSCFHT Elvis 94 Galaxy XMM

  9. Constant power per decade Radio FIR Opt-UV EUV X-ray NIR 1 dex Quasar Spectral Energy Distribution Elvis et al., 1994, ApJS, 95, 1

  10. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Opt-UV Radio FIR EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Big Blue Bump (0.1~1μm) Radio-loud mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Elvis et al., 1994, ApJS, 95, 1

  11. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Review by Harris & Krawczynski (2006) Elvis et al., 1994, ApJS, 95, 1

  12. Radio Loudness • Radio Loudness Definitions: • RL =log(f5GHz/fB)>1 • q24= log(f24μm/f1.4GHz)<0 • R*uv= log(f5GHz/f2500Å)>1 • Ri=log(f1.4GHz/fi)>1 • logP5GHz(W/Hz/Sr)>23.7 • RX=log(νLν(5GHz)/LX)>-3 • where LX is the luminosity in 2-10 keV • *Affected by reddening • Radio Loudness Distr.: bimodal (e.g. Kellermann +1989, Miller+1990) continuous (e.g. Cirasuolo +2003) • Typical RL Fraction ~10% (e.g. Kellermann +1989; Urry & Padovani 1995) • RL Fraction evolve with z or i magnitude (Balokovic + 2012) • RL(L/LEdd)-1 for L/LEdd>0.001(Sikora + 2007)

  13. Small Radio Loud Fraction (Hao + 2012 in prep) RQ RL • COSMOS RL fraction~4%, 9% (Ri) • 5/413 RL in common for all definitions • 8/413 RL in common for two definitions • COSMOS sources are at the high accretion tail of the Sikora + 2007 plot show no similar trend.

  14. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Lack Observation Data; ALMA✔ Grey Body: Fν ∝ν3+β/(ehν/kT − 1), where β~1-2 (Silva + 1998, Dunne & Eales 2001) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

  15. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Observation: Spitzer, Herschel, WISE Torus model: Smooth (eg. Fritz + 2006) Clumpy (eg. Nenkova + 2008) 2-phase (eg. Stalevski + 2012) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

  16. Dust Property • Dust extinct λ~2πa most • AGN extinction curve SMC like (Czerny + 2004; Gaskell + 2004; Crenshaw+2001, 2002—Seyferts; Hopkins +2004 —SDSS+2MASS; ) • Maximum dust temperature: • 1400K - 1900K • (eg. Laor & Drain 1993) • Inner radius of dust sublimation: • 0.01 - 0.1pc (10~100 light days) • (Suganuma+ 2006) Reddening of E94: E(B-V)=0~1

  17. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution BBB comes from Accretion Disk (Shields 1978) Simple α disk fits well Fν∝ν⅓ (Frank+2002) Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

  18. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Milky Way Opaque Define αox= -log[L2keV/L2500Å]/2.605 Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

  19. corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Quasar Spectral Energy Distribution Compton Hump (~10-30keV) Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν3(dust) Elvis et al., 1994, ApJS, 95, 1

  20. Veritas • Needs many telescopes • Several Quasar Properties Affect: • (Variability, BEL, …) • Reddening • Host Galaxy Contamination Fermi Chandra Quasar Continuum is Hard to Study Hubble Spitzer SMA VLA

  21. Why SED is important? Int. 1) SED-----> Total Quasar Power (Lbol)kCorrection Transfer Lν to Lbol  Accretion Rate Accretion History of the Universe 2) SED ----- AGN Structure --- Origin of Continuum 3) SMBH and Galaxy Co-evolution / Black Hole Growth 4) …

  22. Elvis 94 RQRL AGN Selection Selected in certain band(s): a) Radio Luminosity (RL is rare, biased towards RL) b) Near Infrared (Lacy / Stern Wedge, obs frame, missing) c) Optical color (e.g. U-B, biased toward blue quasar) d) X-ray Luminosity (most complete) 2) Emission Lines (e.g. BPT Diagram) 16 SWIRE Galaxy Template (Polletta+2007) normalized at UKIDSS L* (Cirasuolo + 2007) Note: SED Fitting usually use Bruzual & Charlot (2003) Gal SEDs (no dust feature)

  23. Outline • Introduction: Definitionand Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

  24. Most studies use only mean SED & bolometric corrections • Yet SED spread is significant: ~1dex in UV, FIR • No theory • No correlations • Small sample: 29 radio-quiet, 18 radio-loud • Low z: 0.05 - 0.9 • Low S/N: in X-ray, UV, FIR • Biased: Blue Quasar • (Elvis et al. 1994) Pre-COSMOS SED - Elvis 94 1 dex 1 dex

  25. SDSS-selected (optical selected) • Photometry coverage: • 5 bands in optical, • limited VLA data (30/259) • limited ROSAT data (28/259) • limited GALEX data • (FUV 55/259; NUV 88/259) • 87 quasars fainter than the SDSS spectroscopic magnitude limit • “Gap Repair” – heavily depend on the Elvis 1994 SED • (Richards et al. 2006) Pre-COSMOS SED - Richards 06

  26. Expect SED differences: 1. The Galaxy/SMBH Merger Cycle QUASAR phase High L/Ledd 2 accretion modes  2 SEDs Star formation rate SMBH luminosity Seyfert phaseLow L/Ledd Time from Merger (Gyr) Hopkins et al. 2008 ApJS, 175, 356

  27. Expect SED differences: 2. αox Depend on Luminosity • αox is anticorrelated with LUV at ~4σ. • (αox= -log[L2keV/L2500Å]/2.605) • No significant correlation between αox and redshift • Vignali, Brandt, & Schneider (2003) • (see also, Steffen+2006, Just+ 2007, • Young+2010, Lusso+2010)

  28. Expect SED differences: 3. M-σ Evolution __ Local spheroid  direction of evolution in 300Myr • Merloni +(2010) • Δlog(MBH/M*)= • (0.68±0.12)log(1+z) • Similar Results, e.g. • Peng+2006 • Schields+2006 • Ho+2007 1<z<2.2

  29. Expect SED differences: 4. Number Density Evolution Elvis 94 COSMOS 80% Quasar Silverman et al. 2005

  30. Quasar Spectral Energy Distribution corona-Comptonized hot dust from ‘torus’ accretion disk jet synchrotron Mechanism Radio FIR Opt-UV EUV X-ray NIR Compton Hump (~10-30keV) Is Elvis94 SED correct? - at ALL 6 decades of L? - at ALL z? 13 Gyr - at ALL L/LEdd? Radio-loud Big Blue Bump (0.1~1μm) mm break (~100μm) 1μm inflection Soft Excess (~0.1 keV) Radio-quiet Lν = ν-3 (dust) Elvis et al., 1994, ApJS, 95, 1

  31. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

  32. References • Hao + 2012a, MNRAS submitted, arXiv:1210.3033 • Hao + 2012b, MNRAS submitted, arXiv:1210.3044 • Elvis, Hao + 2012, ApJ, 759, 6 • Hao + 2011, ApJ, 733, 108 • Hao + 2010, ApJL, 724, 59

  33. COSMOS Type 1 AGN Sample Elvis 94 Richards 06 XMM-COSMOS K H J GALEX MIPS IRAC Subaru SDSSCFHT Elvis 94 Galaxy XMM

  34. (Elvis, Hao + 2012) Mean SED Elvis 94 • Galactic Extinction Correction • Variability Restriction • Broad Emission Line Correction • Host Galaxy Correction Before Any Correction XMM-COSMOS Mean SED

  35. (Elvis, Hao + 2012) Mean SED Elvis 94 Before Any Correction After First Corrections * XMM-COSMOS Mean SED Galaxy normalized at UKIDSS L* (Cirasuolo + 2007) OPT-UV *Galactic Extinction Variability Restriction Em. Line Correction Luo+2010

  36. (Elvis, Hao + 2012) Host Galaxy Correction Two Host Galaxy Contamination Estimation Methods: Hubble Imaging (ACS 814W) : only for z<1(Cisternas+2011) Mbulge vs MBH relationship (Marconi & Hunt 2003): needs MBH (206/413) logLJ,gal = 0.877 log Lbol − 0.877 log λE-1.23log(1+z)+ 3.545 XMM

  37. (Elvis, Hao + 2012) Mean SED With Host Correction Elvis+1994 Richards+2006 Hopkins+2007 Shang+2011 Elvis, Hao+2012 XMM-COSMOS Mean SED (203/413)

  38. z, Lbol, logMBH and logλEParameter Space z, Lbol, log(MBH/M), logλE=log(Lbol/LEdd) Radio Loud Host Corrected 203 Quasars

  39. Similarity of Mean SED in logLbol bins (Hao + 2012a) logLbol (46.1, 47.3] Elvis 94 • (45.7 46.1] Mean SED (45.4 45.7] (44.3 45.4] Elliptical

  40. Mean SED in z, logLbol, logMBH, logλE bins (norm) z logLbol 1.5 2 logMBH logλE 1.5 1.5 (Hao + 2012a)

  41. SED Dispersion in z, Lbol, MBH, λE bins (norm) z logLbol E94 Dispersion logMBH logλE (Hao + 2012a)

  42. The Luminosity Dependence at Fixed z (Hao + 2012a) The SED shape has no obvious dependence on bolometric luminosity at similar redshifts.

  43. The Redshift Dependence at Fixed Lbol (Hao + 2012a) The SED shape has no obvious dependence on redshift at similar bolometric luminosity.

  44. SED Partial Dependence (Hao + 2012a)

  45. Quasar Growth Physics invariant with z,Lbol, MBH, L/LEdd • z~0.3  secular growth mode z~2  merger dominated epoch has the same SED as Intrinsic Quasar SED Exists Gross quasar structure within the torus does not change; But the M-σ is evolving,feeding must be changing.

  46. Outline • Introduction: Definition and Important Questions • XMM-COSMOS SEDs • Mixing Diagram: HR Diagram in AGN Evolution? • Evolution Track • Inferred Host Galaxy Fraction • Inferred Reddening E(B-V) • Outliers: Hot-Dust-Poor Quasars & Others • Summary

  47. Elvis 94 RQRL Ell2 Ell5 Ell13 S0 Sa Sb Sc Sd Sdm Spi4 NGC6090 M82 Arp220 IRAS 20551-4250 IRAS 22491-1808 NGC6240 Quasar and Galaxy SEDs 16 SWIRE Galaxy (Polletta+2007) norm. at UKIDSS L* in K band (Cirasuolo + 2007)

  48. Disentangling Quasar and Host (Hao + 2012b) αNIR αOPT Hot Dust Accretion Disk 1-3μm 0.3-1μm XMM

  49. Host Dominated Quasar-Host-Reddening Mixing Diagram (Hao + 2012b) ??? Host Dominated AGN Dominated Reddening Dominated E(B-V) AGN Dominated Reddening Dominated

  50. (Hao + 2012b) COSMOS AGN on Mixing Diagram E94 mean SED works in 90% of COSMOS Quasars (Hao et al. 2012a) Consistent with mean E94+Host+Reddening

More Related