1 / 27

Unified Modeling (Part I) Overview of UML & Modeling

Unified Modeling (Part I) Overview of UML & Modeling. Elizabeth Bigelow Carnegie Mellon University. Today’s Lecture. Modeling Software Architecture Introducing UML Software Development Life Cycle. Modeling. Why model? Kinds of models Why is it important? Principles of Modeling

wells
Télécharger la présentation

Unified Modeling (Part I) Overview of UML & Modeling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unified Modeling (Part I)Overview of UML & Modeling Elizabeth Bigelow Carnegie Mellon University

  2. Today’s Lecture • Modeling • Software Architecture • Introducing UML • Software Development Life Cycle

  3. Modeling • Why model? • Kinds of models • Why is it important? • Principles of Modeling • Object-Oriented Modeling

  4. Why Model? • To communicate the desired structure and behavior of a system • To visualize and control the architecture • To better understand a system and manage risk • To reason about alternatives

  5. Kinds of Models • Iconic (example: model airplane) • Analogic (example: electrical network modeling the flow of liquid through pipes; some properties, some structure) • Analytic (example: set of differential equations claiming to describe how prices change)

  6. What is a model? • A simplification of reality (abstraction)-- not the truth, the whole truth and nothing but the truth… • At the same time, we choose to make certain parts rigorous

  7. Why is Modeling Important? • We cannot visualize a system in its entirety--limits to the human ability to understand complexity

  8. Principles of Modeling • Choice of model has profound influence on how a problem is attacked and how solution is shaped • Every model may be expressed at different levels of precision • The best models are connected to reality • No single model is sufficient

  9. The hard part • Many models of the same thing are nearly independent (at least in preparation) • The hard part: fitting them all together

  10. Object Oriented Modeling • The primary strength of object oriented modeling is helping to pull the various models together • Traditional methods algorithmically based--tend to be brittle, hard to change • Does not mean that implementation must be object oriented, or even in an object oriented language

  11. Software Architecture • Shaw & Garlan: • Software Architecture is the system level organization of components (units of code) and connectors (method invocation, RPC, • network protocols, etc.) • Another definition is that software architecture is the highest level of system organization in which one can discern or impose order.

  12. Architectural Decisions • Organization of a software system • Selection of structural elements and their interfaces by which the system is composed • Behavior (collaboration among elements) • Composition into progressively larger subsystems • Architectural style (patterns, pipe-filter, functional decomposition, object-oriented, main line procedure call, event system)

  13. Modeling a System’s Architecture Design View Implementation View Use Case View Process View Deployment View

  14. Design View • Classes, interfaces collaborations • Services that should be provided to end users • Static aspects captured in class diagrams and object diagrams • Dynamic aspects are captured in interaction diagrams, statecharts, and activity diagrams

  15. Process View • Threads and processes that form a system’s concurrency and synchronization mechanisms • Addresses performance, scalability and throughput of the system (focus on active classes)

  16. Implementation View • Components and files used to assemble and realize the physical system • Diagrams: component diagrams (static) and interaction diagrams, statechart diagrams and activity diagrams

  17. Deployment View • Hardware topology on which the system executes • Distribution, deliver and installation of the parts that make up the physical system • Deployment diagrams (static) and interaction, statechart, and activity diagrams (dynamic)

  18. Use Case View • Use cases describe the system as seen by its end users, analysts and testers • Static aspects are captured in use case diagrams and dynamic are captured in interaction diagrams, statechart diagrams and activity diagrams

  19. UML Conceptual Model • Building blocks--things, relationships and diagrams • Rules on how the blocks may be put together (names, scope, visibility, integrity, execution) • Common mechanisms (specifications, adornments, common divisions, extensibility mechanisms)

  20. Classes and Objects • A class is a set of objects that share the same attributes, relationships and semantics. • An object is an instance of a class--an entity with a well defined boundary and identity that encapsulates state and behavior

  21. Key Abstractions • Structural Things (class, interface) • Behavioral Things (dynamic, interaction-messages, state machines) • Grouping Things (packages) • Annotational Things (comments, constraints) • Relationships (dependency, association, generalization, realization

  22. Diagrams Class diagrams Object diagram Use case diagram Sequence diagram Collaboration diagram Statechart diagram Activity diagram Component diagram Deployment diagram

  23. Examples Pilot Wright Flyer 1 Flies * Name Weight Take Off () Land () Turn() Increase Throttle() Brake () Decrease Throttle() 1 1 1 1 2 2 Wing Canard Rudder Engine

  24. High Level Statechart for Wright Flyer Taking Off Flying Idle (Parked) Landing

  25. <<extends>> Wright Flyer Starts Engine Flexes Wing Orville Releases Catapult Says Start Engine Wilbur USE CASE DIAGRAM

  26. The Lifecycle According to Booch, Rumbaugh and Jacobson • Inception • Business Modeling & Requirements • Elaboration • Analysis, Design, Implementation, Test • Construction • Analysis, Design, Implementation, Test • Transition • Implementation, Test, Deployment

  27. Next Time • Basic Structural Modeling

More Related