1 / 46

Chapter 9: Mechanisms and Characteristics of Musculoskeletal and Nerve Trauma

Chapter 9: Mechanisms and Characteristics of Musculoskeletal and Nerve Trauma. Mechanical Injury. ___________ is defined as physical injury or wound, produced by internal or external force

wnapier
Télécharger la présentation

Chapter 9: Mechanisms and Characteristics of Musculoskeletal and Nerve Trauma

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 9: Mechanisms and Characteristics of Musculoskeletal and Nerve Trauma

  2. Mechanical Injury ___________ is defined as physical injury or wound, produced by internal or external force _______________ results from force or mechanical energy that changes state of rest or uniform motion of matter

  3. Tissue Properties ________ An external force acting on the body causing internal reactions within the tissues _____________ Ability of a tissue to resist a load Greater stiffness = greater magnitude load can resist ________ Internal resistance to a load ____________ Internal change in tissue (i.e. length) resulting in deformation

  4. Figure 9-1

  5. Body tissues are viscoelastic and contain both viscous and elastic properties • _________________ • Point at which elasticity is almost exceeded is the yield point • If deformation persists, following release of load permanent or plastic changes result • When yield point is far exceeded mechanical failure occurs resulting in damage

  6. Tissue Loading ___________ Force that pulls and stretches tissue Compression Force that results in tissue crush – two forces applied towards one another _____________ Force that moves across the parallel organization of tissue Figure 9-2

  7. Bending • ________ force pairs act at opposite ends of a structure (4 points) • Three forces cause bending (3 points) • Already bowed structures encounter axial loading • ___________ • Loads caused by twisting in opposite directions from opposite ends • Shear stress encountered will be perpendicular and parallel to the loads Figure 9-2

  8. Traumatic vs. Overuse Injuries • Nature of physical activity dictates that over time injury will occur • Debate over acute vs. chronic injuries • When injury is acute – something has initiated the ________________ • Injury becomes chronic when it doesn’t properly heal • Could define relative to mechanism • Traumatic (i.e. a direct blow) vs. Overuse (i.e. repetitive dynamic use over time)

  9. Musculotendinous Unit Injuries High incidence in _________ Anatomical Characteristics Composed of contractile cells that produce movement Possess following characteristics Irritability Contractility Conductivity Elasticity

  10. Three types of muscle _________ _________ Striated (skeletal) • Skeletal Muscle Figure 9-3

  11. Muscle ____________ Stretch, tear or rip to muscle or adjacent tissue Cause is often obscure Abnormal muscle contraction is the result of 1)failure in reciprocal coordination of agonist and antagonist, 2) electrolyte imbalance due to profuse sweating or 3) strength imbalance May range from minute separation of connective tissue to complete tendinous __________ or muscle rupture

  12. Muscle Strain Grades Grade I - some fibers have been stretched or actually torn resulting in tenderness and pain on active ROM, movement painful but full range present Grade II - number of fibers have been torn and active contraction is painful, usually a depression or divot is palpable, some swelling and discoloration result Grade III- Complete ___________ of muscle or musculotendinous junction, significant impairment, with initially a great deal of pain that diminishes due to nerve damage Pathologically, strain is very similar to contusion or sprain with capillary or blood vessel hemorrhage

  13. Time required for healing may be ____________ • Often involves large, force-producing muscles • Treatment and recovery may take 6-8 weeks depending on severity • Return to play too soon could result in re-injury

  14. Muscle _____________ • Painful involuntary skeletal muscle contraction • Occurs in well-developed individuals when muscle is in shortened position • Experienced at night or at rest • Muscle Guarding • Following _____, muscles within an effected area contract to splint the area in an effort to minimize pain through limitation of motion • Involuntary muscle contraction in response to pain following injury • Not spasm which would indicate increased tone due to upper motor neuron lesion in the brain

  15. Muscle Spasms A reflex reaction caused by trauma Two types ________ - alternating involuntary muscular contractions and relaxations in quick succession ________ - rigid contraction that lasts a period of time May lead to muscle or tendon injuries

  16. Muscle Soreness Overexertion in strenuous exercise resulting in muscular ______ Generally occurs following participation in activity that individual is unaccustomed Two types of soreness Acute-onset muscle soreness - accompanies fatigue, and is transient muscle pain experienced immediately after exercise Delayed-onset muscle soreness (_________) - pain that occurs 24-48 hours following activity that gradually subsides (pain free 3-4 days later) Potentially caused by slight microtrauma to muscle or connective tissue structures Prevent soreness through gradual build-up of intensity

  17. Tendon Injuries Wavy parallel collagenous fibers organized in bundles - upon loading Can produce and maintain 8,700- 18,000 lbs/in2 Collagen straightens during loading but will return to shape after loading Breaking point occurs at 6-8% of increased length Tears generally occur in muscle and not tendon

  18. Repetitive stress on tendon will result in microtrauma and ______________, causing fibroblasts influx and increased collagen production Repeated microtrauma may evolve into chronic muscle strain due to reabsorption of collagen fibers Results in weakening tendons Collagen reabsorption occurs in early period of sports conditioning and immobilization making tissue susceptibility to injury – requires gradual loading and conditioning

  19. Tendinitis • _________________, with diffuse tenderness due to repeated microtrauma and degenerative changes • Obvious signs of swelling and pain • Key to treatment is _______ • May require substitution of activity in order to maintain fitness without stressing injured structure • Without proper healing condition may begin to degenerate and be referred to as tendinosis • Less inflammation, more visibly swollen with stiffness and restricted motion • Treatment involves stretching and strengthening Figure 9-5

  20. Tenosynovitis • Inflammation of ________________ • In acute case - rapid onset, crepitus, and diffuse swelling • Chronic cases result in thickening of tendon with pain and crepitus • Often occurs in long flexor tendon of the digits and the biceps tendon • Due to nature of injury anti-inflammatory agents may be helpful

  21. Myofascial Trigger Points Discrete, hypersensitive nodule within tight band of _______________________ Classified as latent or active Develop as the result of mechanical stress Either acute trauma or microtrauma May lead to development of stress on muscle fiber = formation of trigger points Latent trigger point Does not cause spontaneous pain May restrict movement or cause muscle weakness Become aware of presence when pressure is applied

  22. Active trigger point Causes pain at rest Applying pressure = pain = jump sign Tender to palpation with referred pain Tender point vs. trigger point Found most commonly in muscles involved in postural support

  23. _________________ Result of sudden ________ to body Can be both deep and superficial ____________ results from blood and lymph flow into surrounding tissue Localization of extravasated blood into clot, encapsulated by connective tissue Speed of healing dependent on the extent of damage Chronically inflamed and contused tissue may result in generation of calcium deposits (myositis ossificans) Prevention through protection of contused area with padding

  24. Atrophy and Contracture __________ is wasting away of muscle due to immobilization, inactivity, or loss of nerve functioning ______________ is an abnormal shortening of muscle where there is a great deal of resistance to passive stretch Generally the result of a muscle injury which impacts the joint, resulting in accumulation of scar tissue

  25. Synovial Joints Injuries Each joint has both __________ or articular cartilage and a fibrous connective tissue capsule Additional synovial joint characteristics Capsule and ligaments for support Capsule is lined with synovial membrane Hyaline cartilage Joint cavity with synovial fluid Blood and nerve supply with muscles crossing joint Menisci (fibrocartilage)

  26. Figure 9-8

  27. Ligament __________ Result of traumatic joint twist that causes stretching or tearing of connective tissue Graded based on the severity of injury Grade I - some pain, minimal loss of function, no abnormal motion, and mild point tenderness Grade II - pain, moderate loss of function, swelling, and instability with tearing and separation of ligament fibers Grade III - extremely painful, inevitable loss of function, severe instability and swelling, and may also represent subluxation

  28. Can result in joint effusion and swelling, local temperature increase, pain and point tenderness, ecchymosis (change in skin color) and possibly an avulsion fracture Greatest difficulty with grade 1 & 2 sprains is restoring stability due to stretched tissue and inelastic scar tissue which forms To regain joint stability strengthening of muscles around the _________ is critical

  29. Dislocations and Subluxations Result in separation of bony articulating surfaces _________________ Partial dislocations causing incomplete separation of two bones Bones come back together in alignment _________________ High level of incidence in fingers and shoulder Occurs when at least one bone in a joint is forced out of alignment and must be manually or surgically reduced Gross deformity is typically apparent with bilateral comparison revealing asymmetry

  30. Dislocation (cont.) ___________________________of the joint are disrupted Joint often becomes susceptible to subsequent dislocations _________ is the only absolute diagnostic technique (able to see bone fragments from possible avulsion fractures, disruption of growth plates or connective tissue) Dislocations (particularly first time) should always be considered and treated as a fracture until ruled out “Once a dislocation, always a dislocation” Figure 9-9

  31. Osteoarthritis Wearing away of ___________ cartilage as a result of normal use Changes in joint mechanics lead to joint degeneration Commonly affects weight bearing joints but can also impact shoulders and cervical spine Symptoms include pain (as the result of friction), stiffness, prominent morning pain, localized tenderness, creaking, grating Either generalized joint pain or localized to one side of the joint Figure 9-10

  32. _______________ Bursa are ___________________that develop in areas of friction Sudden irritation can cause acute bursitis, while overuse and constant external compression can cause chronic bursitis Signs and symptoms include swelling, pain, and some loss of function Repeated trauma can lead to calcification and degeneration of internal bursa linings Figure 9-11

  33. Capsulitis and Synovitis ________________ is the result of repeated joint trauma Synovitis can occur acutely but will also develop following mistreatment of joint injury Chronic synovitis can result in edema, thickening of the synovial lining, exudation can occur and a fibrous underlying develops Motion may become restricted and joint noises may develop

  34. Bone Injuries Anatomical Characteristics Dense connective tissue matrix Outer compact tissue Inner porous cancellous bone including Haversian canals Figure 9-12

  35. Bone Functions Body support Organ protection Movement (through joints and levers) Calcium storage Formation of blood cells (hematopoiesis) Types of Bone Classified according to shape _____________- skull, ribs, scapulae Irregular bones - vertebrae and skull _____________- wrist and ankle Long bones (humerus, ulna, tibia, radius, fibula, femur) - bones most commonly injured

  36. Gross Structures ___________ -shaft - hollow and cylindrical - covered by compact bone - medullary cavity contains yellow marrow and lined by endosteum Epiphysis - composed of cancellous bone and has hyaline cartilage covering - provides areas for muscle attachment ____________ - dense, white fibrous covering which penetrates bone via Sharpey’ fibers - contains blood vessels and osteoblasts

  37. Bone Fractures Classified as either __________________ Closed fractures are those where there is little movement or displacement Open fractures involve displacement of the fractured ends and breaking through the surrounding tissue Serious condition if not managed properly Signs & symptoms Deformity, pain, point tenderness, swelling, pain on active and passive movements Possible crepitus X-ray will be necessary for definitive diagnosis

  38. Figure 9-13 • Mechanism of Injury • Fracture may be direct (at point of force application) or indirect • Sudden violent and forceful muscle contraction • Types of fractures • __________ • Comminuted • Linear • Transverse • Oblique • __________ • Impacted • Depressed

  39. ____________________ No specific cause but with a number of possible causes Overload due to muscle contraction, altered stress distribution due to muscle fatigue, changes in surface, rhythmic repetitive stress vibrations Bone becomes susceptible early in training due to increased muscular forces and initial remodeling and resorption of bone Progression involves, focal microfractures, periosteal or endosteal response (stress fx) linear fractures and displaced fractures Early detection is difficult, ____________ is useful, x-ray is effective after several weeks

  40. Typical causes include Coming back to competition too soon after injury Changing events without proper conditioning Starting initial training too quickly Changing training habits (____________, shoes….etc) Variety of postural and foot conditions Signs and symptoms Focal tenderness and pain, (early stages) Pain with activity, (later stages) with pain becoming constant and more intense, particularly at night, (exhibit a positive percussion tap test) Common sites involve tibia, fibula, metatarsal shaft, calcaneus, femur, pars interarticularis, ribs, and humerus Management varies between individuals, injury site and extent of injury

  41. Nerve Injuries Compression and tension are primary mechanisms May be acute or chronic Physical trauma causes pain and can result in a host of sensory responses (pinch, burn, tingle, muscle weakness, radiating pain) Long term problems can go from minor nerve problems to paralysis __________________ Interruption in conduction through nerve fiber Brought about via compression or blunt trauma Impact motor more than sensory function Temporary loss of function Pain can be referred as well

  42. Body Mechanics and Injury Susceptibility Body moves very effectively in upright position - able to overcome great forces even with inefficient lever system Body must overcome inertia, muscle viscosity and unfavorable angles of pull Mechanical reasons for injury - __________ _____________________________________ _____________________________________ Body build, structural make-up, habitual incorrect application of skill may also predispose individual to injury

  43. Microtrauma and Overuse Syndrome Injuries as a result of abnormal and repetitive stress and microtraumas fall into a class with certain identifiable syndromes Frequently result in limitation or curtailment of sports involvement Often seen in __________________________ ______________________________________ Some of these injuries while small can be debilitating Repetitive overuse and stress injuries include Achilles tendinitis, shin splints, stress fx, Osgood-Schlatter's disease, runner’s and jumper’s knee, patellar chondromalacia and apophyseal avulsion

  44. _____________________ Often an underlying cause of injury May be the result of unilateral muscle or bony and soft tissue asymmetries Sports activities may cause asymmetries to develop Results in poor pathomechanics Imbalance is manifested by postural deviations as body tries to regain balance relative to CoG May be primary cause of injury

  45. Injury generally becomes ____________ and athletic participation must stop Athletic trainer should attempt to correct _____________ conditions Postural conditions can make individual exceedingly more prone to injury

More Related