50 likes | 192 Vues
This resource guides learners through the process of factorizing and expanding quadratic expressions. It includes step-by-step examples, such as manipulating expressions like ( x^2 + 6x + 8 ) into factors ( (x + 2)(x + 4) ), as well as expanding brackets for polynomial expressions. Practice problems bolster understanding of the material, with thorough solutions provided. Ideal for reinforcing knowledge in preparation for exams or enhancing skills in algebra for students.
E N D
Beginning factorising x2 + 6x + 8 = (x + 2)(x + 4) x2 + 2x 3 = (x + 3)(x 1)
10 mins: Expand the following brackets and simplify: 9x2 + 27x + 14 12x2 + 51x + 45 • (3x + 7)(3x + 2) • (4x + 5)(3x +9) • (5x + 4)(3x – 2) • (4x + 5)(2x – 4) • (7x – 2)(3x + 6) • (5x – 3)(2x – 6) • (8x – 2)(7x – 4) • (3x + 2)2 • (4x – 3)2 • (5x – 4)2 15x2 + 2x 8 8x26x 20 21x2+ 36x 12 10x2 36x+ 18 56x2 46x+ 8 9x2 + 12x+ 4 16x2 24x+ 9 25x2 40x+ 16
5 mins: Complete the following statements. 3 3 • (x + 2)(x + ……) = x2 + 5x + 6 • (x + 1)(x + ……) = x2 + 4x + 3 • (x + 5)(x + ……) = x2 + 9x + 20 • (x + 4)(x + ……) = x2 + 7x + 12 • (x + 2)(x + ……) = x2 + 4x + 4 • (x – 1)(x + ……) = x2 + 4x – 5 • (x – 2)(x + ……) = x2 + 3x – 10 • (x – 4)(x + ……) = x2 – x – 12 • (x – 3)(x – ……) = x2 – 5x + 6 • (x + 3)(x – ……) = x2 – 6x – 27 4 3 2 5 5 3 2 9
5 mins: Complete the following statements. 1 4 1 5 • x2 + 5x + 4 = (x + ……)(x + ……) • x2 + 6x + 5 = (x + ……)(x + ……) • x2 + 7x + 12 = (x + ……)(x + ……) • x2 + 7x + 10 = (x + ……)(x + ……) • x2 + 8x + 15 = (x + ……)(x + ……) • x2 + 11x + 30 = (x + ……)(x + ……) • x2 + x 6 = (x + ……)(x ……) • x2 + 2x 3 = (x + ……)(x ……) • x2x 6 = (x + ……)(x ……) • x2 7x + 12 = (x ……)(x ……) 3 4 2 5 3 5 5 6 3 2 3 1 2 3 3 4