1 / 27

Longest Palindromic Substring

Longest Palindromic Substring. Yang Liu. Problem. Given a string S Find the longest palindromic substring in S. Example: S=“ abcbcbb ”. The longest palindromic substring is “ bcbcb ”. Simple Idea(Brute Force). S=“ abcbcbb ”. Length= n(6) substring: “ abcbcbb ”---not palindromic.

yaron
Télécharger la présentation

Longest Palindromic Substring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Longest Palindromic Substring Yang Liu

  2. Problem • Given a string S • Find the longest palindromic substring in S. Example: S=“abcbcbb”. The longest palindromic substring is “bcbcb”.

  3. Simple Idea(Brute Force) S=“abcbcbb” Length=n(6) substring: “abcbcbb”---notpalindromic Length=n-1(5) substring: start=0, end=n-2(4): “abcbc”---notpalindromic start=1, end=n-1(5): “bcbcb”---palindromic Longest palindromic substring: “bcbcb”

  4. Simple Idea(Brute Force) For len=n to 2 for start=0 to n-len end= start+len-1 if substring(start,end) is palindromic return substring(start,end) Return first character Complexity

  5. Dynamic Programming(DP) • If substring(i,j) is palindromic, then substring(i+1,j-1) is palindormic • P[i,j]=1 if substring(I,j) is palindormic =0 otherwise • When j-i is small(=0, 1), easy to know: P[i,i]=1 and P[i,i+1]=(S[i]==S[j]) (base) • Computer P[i,j] from small j-i to big j-i: P[i,j]=P[i+1,j-1] && S[i]==S[j]

  6. Example of DP S=“abcbcbb” P[i,i]

  7. Example of DP S=“abcbcbb” P[i,i] P[i,i+1]

  8. Example of DP S=“abcbcbb” P[i,i] P[i,i+1] P[i,i+2] P[i,i+3]

  9. Example of DP S=“abcbcbb” P[i,i] P[i,i+1] P[i,i+2] P[i,i+3] . . .

  10. Example of DP S=“abcbcbb” Max palindromic substring? P[i,i] for(len=n to 1) for(i=0 to n-len) if (P[i,i+len-1]) return S[i..i+len-1] P[i,i+1] P[i,i+2] P[i,i+3] . . .

  11. DP Algorithm for(i=0 to n-1) P[i,i]=1; P[i,i+1]=(S[i]==S[i+1])?1:0; for(len=3 to n) for(i=1 to n-len+1) P[i,i+len-1]=(P[i+1,i+len-2] && S[i]==S[i+len])?1:0 for(len=n to 1) for(i=0 to n-len) if (P[i,i+len-1]) return S[i..i+len-1] O(n2) time and space

  12. Algorithm of O(1) Space and O(n2) time • Given the center of a palindrome, easy to find the maximum substring with that center • center at i: check S[i-dist]==S[i+dist] S=“abcbcbb” center at 2(c) S[2-1]=S[2++1]=b continue S[2-2]!=S[2+2] stop • center at i,i+1: check S[i-dist]==S[i+1+dist] • Do this for all possible centers(n+n-1=2n-1)

  13. Linear Time Algorithm • The previous algorithm simply computes: • an array P[1..n-1] where P[i] is the length of maximum substring centered at i. • an array Q[1..n-2] where Q[i] is the length of maximum substring centered at i and i+1. • Can we reduce the time to compute P[i] & Q[i] by using already computed P[j] & Q[j] (j<i)?

  14. Compute P[i] & Q[i] Efficiently S=“abbabbabbabbabbaba” • “abbabbabbabbabbaba” P[6]=12 • “abbabbabbabbabbaba” Q[7]=16 • P[7]? Q[7]? • “abbabbabbabbababa” Shall we compare S[8] & S[10]? • “abbabbabbabbababa” No! its image P[2] W.R.T S[7] and the rightmost edge of P[7] provide a lower bound. • Similarly, “abbabbabbabbabbaba” implies a lower bound from P[6] and the rightmost edge of Q[7]

  15. Lower Bound of P[i] • Depends on the rightmost edge of paralindromic substrings and the image of S[i] in the substring. • Rightmost edge: rEdge • Image: depends on the length of the substring • can we make the length of paralindromic substrings to be always odd?

  16. Length Change of Paralindromic Substrings • Insert a special character between any adjacent characters in the input string • S =“abcbcbb”  S=“#a#b#c#b#c#b#b” • S=“abccbab” S=“#a#b#c#c#b#a#b”

  17. Center, Image, and Rightmost Edge • “abbabbabbabbabbaba” P[19]=? center rEdge=26 =13 • “#a#b#b#a#b#b#a#b#b#a#b#b#a#b#b#a#b#a” image=2*13-19=7 P[7]=13 P[19]>=P[7]=13

  18. Center, Image, and Rightmost Edge • “aababbabbabaaaba” P[19]=? center rEdge=28 =15 • “#a#a#b#a#b#b#a#b#b#a#b#a#a#a#b#a” image=2*15-19=7 P[7]=7 P[21]>=P[7]=7

  19. Center, Image, and Rightmost Edge • “babbabbabbabbaaaba” P[21]=12 center rEdge=28 =15 • “#b#a#b#b#a#b#b#a#b#b#a#b#b#a#a#b#a#b#a” image=2*15-21=9 P[9]=19 P[21]>=2(rEdge-i)-1 =2(28-21)-1=13

  20. Center, Image, and Rightmost Edge • “babbabbabbabbaaaba” P[21]=12 center rEdge=28 =15 • “#b#a#b#b#a#b#b#a#b#b#a#b#b#a#a#b#a#b#a” In general, paralindromic substring centered at i can be extended to one side at least min(P[i], rEdge-i) (P[i] now refers to the maximum characters in one side including the center character at i)

  21. Center, Image, and Rightmost Edge • “abbabbabbabbabbaba” P[19]=? center rEdge=26 =13 • “#a#b#b#a#b#b#a#b#b#a#b#b#a#b#b#a#b#a” image=2*13-19=7 P[7]=7 P[19]>=min(P[7],26-19)=7

  22. Center, Image, and Rightmost Edge • “aababbabbabaaaba” P[19]=? center rEdge=28 =13 • “#a#a#b#a#b#b#a#b#b#a#b#a#a#a#b#a” image=2*13-19=7 P[7]=3 P[21]>=min(P[7],28-)=

  23. Center, Image, and Rightmost Edge • “babbabbabbabbaaaba” P[21]=12 center rEdge=28 =15 • “#b#a#b#b#a#b#b#a#b#b#a#b#b#a#a#b#a#b#a” image=2*15-21=9 P[9]=10 P[21]>=min(P[9],28-21+1)=8

  24. O(n) Algorithm For(i=1 to n-1) insert special character before A[i] center=0; rEdge=0; For(i=1 to 2n-1) image=2*center-i; P[i]=min(P[image],rEdge-i+1); extend P[i] to its maximum; if(P[i]+i>rEdge) rEdge=P[i]+I; center=i; Find the maximum P[i] for i in 1, 3, …, 2n-1. Return the substring centered at i with 2P[i]-1 characters. Why the complexity is O(n)?

  25. Exercise 1 • Find one of the longest paralindromic subsequences. Example: S=“abbbcccabaa” Longest paralindormicsubsequenc: “abccba” from “abbbcccabaa”

  26. Exercise 2 Determine whether an integer is a palindrome. Do this without extra space.

  27. Research Reference “A New Linear-Time ‘On-Line’ Algorithm for finding the smallest initial palindrome of a string”, G. Manacher, JACM 22(3):346-351, 1975.

More Related