1 / 42

Renewal processes

Renewal processes. Interarrival times. { 0,T 1 ,T 2 ,..} is an i.i.d. sequence with a common distribution fct. F S i =  j=1 i T j { S i } is a nondecreasing, positive sequence of reneval times (point) The distribution of S i is F (i) F (i ) = f (i ) * F = F * f (i )

yul
Télécharger la présentation

Renewal processes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Renewal processes

  2. Interarrival times • {0,T1,T2,..} is an i.i.d. sequence with a common distribution fct. F • Si = j=1iTj • {Si} is a nondecreasing, positive sequence of reneval times (point) • The distribution of Si is F(i) • F(i) = f(i) * F = F * f(i) • f(i) is the i-fold convolution of f (f = d/dx F)

  3. The counting process • N(t) = maxi {Si· t} • N(t) counts the number of renewal point before t • M(t) = E[N(t)] is the expected number of renevals before t • M(t) = n n P(N(t)=n) • P(N(t)=n)=P(Sn· t and Sn+1 > t) = P(Sn+1 > t) - P(Sn > t and Sn+1 > t)

  4. The counting process • P(N(t)=n)=P(Sn· t and Sn+1 > t) = P(Sn+1 > t) - P(Sn > t and Sn+1 > t) • Now Sn > t => Sn+1 > t so • P(Sn > t and Sn+1 > t) = P(Sn > t) • Altogether • P(Sn· t and Sn+1 > t) = P(Sn+1 > t) - P(Sn > t) = P(Sn· t) - P(Sn+1· t) = F(n)(t) – F(n+1)(t)

  5. The counting process • M(t) = n n P(N(t)=n) =n n P(Sn· t and Sn+1 > t) = n n (F(n)(t) – F(n+1)(t)) =F(1)(t) + n=2 n F(n)(t) – (n-1)F(n)(t) =F(1)(t) + n=2F(n)(t) =F(t) + n=2f(n) * F =F(t) + f * n=1f(n) * F =F(t) + (f * M)(t)

  6. The renewal density • m(t)= d/dt M(t): is called the renewal density • M(t+h)-M(t) is the expected number of renewals in [t,t+h] • When h is small P(N(t+h)-N(t)>1)=O(h2) and P(N(t+h)-N(t)=1)=O(h) • Thus (M(t+h)-M(t)) ¼ P(N(t+h)-N(t)=1) ¼ h ¢ m(t) • h¢ m(t) approximates the probability of a renewal within [t,t+h]

  7. The renewal density • m(t)= d/dt M(t) • M(t)=F(t) + (f * M)(t) • m(t) = f(t) + d/dt (F * M)(t) • = f(t) + d/dt(s0t M(t-u) f(u) du) • = f(t) + s0t m(t-u) f(u) du • = f(t) + (f * m)(t)

  8. Recurrence times • Backward recurrence time (age): A(t) = t – SN(t) • Forward recurrence time (excess): Y(t) = SN(t)+1 –t • FA,t(a) = P(A(t) · a) • FY,t(y) = P(Y(t) · y)

  9. Distribution of age F A,t(a) = P(A(t) · a) = P(t-S N(t)· a) • We condition on the first renewal, i.e. P(A(t) · a) = s01 P(A(t) · a | S1=s) f(s) ds =s0t P(A(t) · a | S1=s) f(s) ds +st1 P(A(t) · a | S1=s) f(s) ds = s0t P(A(t-s) · a) f(s) ds + st1 P(A(t) · a | S1=s) f(s) ds = s0tFA,t-s(a) f(s) ds + st1 I(t · a) ¢ f(s) ds = s0tFA,t-s(a) f(s) ds + I (t · a} R(t) = (F A,.(a) * f)(t) + I(t · a) R(t)

  10. Distribution of excess • FY,t(y) = P(Y(t) · y) • We condition on the first renewal, i.e. P(Y(t) · y) = s01 P(Y(t) · y | S1=s) f(s) ds =s0t P(Y(t) · y | S1=s) f(s) ds +st1 P(Y(t) · y | S1=s) f(s) ds = s0t P(Y(t-s) · y) f(s) ds + st1 P(Y(t) · y | S1=s) f(s) ds = s0tFY,t-s(y) f(s) ds + st1I(s-t · y)¢ f(s) ds = (FY,.(y) * f)(t) + st1 I(s · (t+y)) ¢ f(s) ds = (FY,.(y) * f)(t) + F(t+y)-F(t)

  11. General solutions • Generally: Z = Q + Z * f • Laplace transform Z(s) = Q(s) + Z(s)f(s) Z(s) (1-f(s)) = Q(s) Z(s) = Q(s) / (1-f(s))

  12. Alternative solution • m(t) = f(t) + (f * m)(t) • Laplace transform m(s) = f(s) + f(s) m(s) m(s) (1-f(s))=f(s) 1-f(s)=f(s)/m(s) • Z(s) (1-f(s)) = Q(s)  Z(s) f(s) = Q(s) m(s) • Z(s) = Q(s) + Z(s) f(s) = Q(s) + Q(s) m(s) • Z(t) = Q(t) + (Q * m)(t)

  13. Example (Poisson) • Poisson process: F(t)=1-exp(-¸ t) f(t) = ¸ exp(-¸ t) R(t) = exp(-¸ t) • m = f + m * f  m(s)=f(s)/(1-f(s)) • f(s) = ¸s exp(-st) exp(-¸ t) dt = ¸ /(s+¸) • m(s) = ¸ /(s+¸)/(1- ¸ /(s+¸)) = ¸ /(s+¸- ¸ )) = ¸ / s • m(t) = ¸ !!!

  14. Limiting renewal densityin general • m(t) = f(t) + (f * m)(t)  • m(s) = f(s) + f(s) m(s)  • m(s)=f(s)/(1-f(s)) • limt -> 1 m(t) = lims -> 0 s m(s) = • lims -> 0 s f(s)/(1-f(s))= (l’Hospital) lims -> 0 d/ds (s f(s)) /lims -> 0 d/ds (1-f(s)) = f(0)/ ((d/ds -f(s))|s=0) = 1/E(Ti) !!!

  15. Example (Poisson) • m(t) = ¸ • FA,t(a) = (FA,.(a) * f)(t) + I(t · a) R(t) • FY,t(y)= (FY,.(y) * f)(t) + F(t+y)-F(t) • Z = Q + Z * f  Z(s) = Q(s) / (1-f(s)) or Z(t) = Q(t) + (Q * m)(t) FA,t(a) = I(t · a) R(t) + ¸s0t I(s · a) R(s) ds = I(t · a) R(t) + ¸s0min(t,a) R(s) ds = I(t · a) exp(-¸ t)+ (1-exp(-min(t,a))) FY,t(y) = (FY,.(y) * f)(t) + F(t+y)-F(t) = F(t+y)-F(t) + ¸s0t F(s+y)-F(s) ds (husk -¸) = exp(-¸ t) - exp(-¸ (t+y)) - exp(-¸ t) + exp(-¸ (t+y)) + (1- exp(-¸ y) ) = 1-exp(-¸ y) = F(y) !!!

  16. Alternating renewal process • Used to model random on/off processes • Network traffic • Power consumption ON OFF Zn Yn Sn-1 Sn Tn = Zn + Yn

  17. Alternating renewal process • I(t) = I(SN(t) < t ·SN(t)+ZN(t)) • I(t) indicates whether t belongs to an on-period. • P(ON at t) = P(I(t)=1)=O(t) • We condition on the first renewal O(t) = P(I(t)=1) = s01 P(I(t)=1 | S1=s) f(s) ds = s0t P(I(t)=1 | S1=s) f(s) ds + st1 P(I(t)=1 | S1=s) f(s) ds = s0t P(I(t-s)=1) f(s) ds + st1 P(t ·Z1 | S1=s) f(s) ds = (O * f)(t) + st1P(Z1¸ t| S1=s) f(s) ds

  18. Alternating renewal process O(t) = (O * f)(t) + st1P(Z1¸ t| S1=s) f(s) ds = (O * f)(t) + s01P(Z1¸ t| S1=s) f(s) ds = (O * f)(t) + P(Z1¸ t) = (O * f)(t) + 1-FZ(t) O(s)=1-FZ(s) + O(s)*f(s)

  19. Example (2 state Markov) • 2 exponential distributions FZ(t)=1-exp(-¸ t) FY(t)=1-exp(-¹ t) f(t) = ¸¹s0t exp(-¸ (t-s)) exp(-¹ s) ds E(T)=E(Y)+E(Z)=1/¹ + 1/¸ limt -> 1=1/E(T)=1/(1/¹+1/¸) • O(s)=1-FZ(s) + O(s)*f(s)  O(s)=(1-FZ(s))/(1-f(s)) or O(s) = 1-FZ(s) + (1-FZ(s)) m(s) • limt -> 1 O(t) = lims -> 0 s O(s) = lims -> 0s(1-FZ(s)) + s(1-FZ(s)) m(s) = lims -> 0(1-FZ(s)) lims -> 0s m(s) = sRZ(t) dt / E(T) • sRZ(t) dt = s 1 ¢RZ(t) dt = tRZ(t) + s t ¢fZ(t) dt -> s t ¢fZ(t) dt = E(Z) • limt -> 1 O(t) = E(Z)/E(T) !!!

  20. Autocorrelation • CII(s) = E((It-E(I))(It+s-E(I))) = E((ItIt+s) – E2(I) • E(I) = limt -> 1 O(t) = E(Z)/E(T) • E(ItIt+s)=P(It and It+s) • Tn = Zn + Yn • SN(t)=SN(t)-1+TN(t) • A(t)=t-SN(t)

  21. Autocorrelation • CII(s) = E((ItIt+s) – E2(I) • t lies in the 1st renewal period • E(I) = E(Z)/E(T) • E(ItIt+s)=P(It and It+s) • P(It and It+s) = s P(t+s · Z1 | S1=x) + P(t ·Z1 and t+s ¸S1 | S1=x) O(t+s-x) f(x) dx

  22. Autocorrelation P(It and It+s) = s P(t+s · Z1 | S1=x) + P(t · Z1 and t+s ¸ S1 | S1=x) O(t+s-x) f(x) dx =s P(t+s · Z1 | S1=x) + P(t · Z1 and t+s ¸ x | S1=x) O(t+s-x) f(x) dx =s P(t+s · Z1 | S1=x) + I(t+s ¸ x)P(t · Z1| S1=x) O(t+s-x) f(x) dx =s P(t+s · z| Z1=z, S1=x) fZ,S(z,x) dzdx + s I(t+s ¸ x)P(t · z| Z1=z, S1=x) O(t+s-x) fZ,S(z,x) dzdx =s I(t+s · z) fS|Z(z,x) fZ(z) dzdx + s I(t+s ¸ x)I(t · z) O(t+s-x) fS|Z(z,x) fZ(z) dzdx =s I(t+s · z) fY(x-z) fZ(z) dzdx + s I(t+s ¸ x)I(t · z) O(t+s-x) fY(x-z) fZ(z) dzdx

  23. Autocorrelation P(It and It+s) = s I(t+s · z) fY(x-z) fZ(z) dzdx + s I(t+s ¸ x)I(t · z) O(t+s-x) fY(x-z) fZ(z) dzdx = sst+sx fY(x-z) fZ(z) dzdx + stt+s stx O(t+s-x) fY(x-z) fZ(z) dzdx = st+s sz fY(x-z) dx fZ(z) dz + stt+s O(t+s-x) stx fY(x-z) fZ(z) dz dx = st+s fZ(z) dx + stt+s O(t+s-x) stx fY(x-z) fZ(z) dz dx = RZ(t+s) + stt+s O(t+s-x) stx fY(x-z) fZ(z) dz dx · RZ(t+s) + sstx fY(x-z) fZ(z) dz dx = RZ(t+s) + P(Z1¸ t) = RZ(t+s)+ RZ(t) \leq 2RZ(2s) (for large s) CII(s) = E((It It+s) – E2(I) \leq E((It It+s) ·2RZ(2s)

  24. Example - Pareto distributions (power/heavy tails) • Let fZ(z)=K z-® I(z ¸z0) ®>1 • FZ(z)= K/(®-1) (z01-® – z1-®) I(z ¸z0) • K= (®-1)/z01-® • FZ(z)= (1 – (z/z0)1-®) I(z ¸z0) • RZ(z)=1-FZ(z) = (z/z0)1-® + I(z ·z0) · (z/z0)1-® CII(s) ¼ 2RZ(2s) = K · (2s)2(H-1) (H - Hurst parameter) H>1/2 : Long Range Dependence (LRD) 1-® = 2(H-1)  H=(1-®)/2+1=3/2-®/2 or ®=3-2H LRD  ® < 2

  25. Sample means • ET = 1/T s0T I(t) dt • I(t) indicates on-state • Var(ET)=E(E T2)= 1/T2 E((s0T I(t) dt)2) = 1/T2 E(s0T I(t) dt s0T I(t) dt) = 1/T2 E(s0Ts0T I(t) I(s) ds dt) = 1/T2s0Ts0T E(I(t) I(s)) ds dt = 1/T2s0Ts0T CII(t-s) ds dt ¼1/T2s0Ts0T 2RZ(2|t-s|) ds dt = 4/T2s0Ts0t RZ(2(t-s)) ds dt

  26. Sample meansfor 2 state Markov process • Var(ET) = 4/T2s0Ts0t RZ(2(t-s)) ds dt • RZ(z) =1-FZ(t)=exp(-¸ t) • Var(ET) ·4/T2s0Ts0t exp(-2¸ (t-s)) ds dt = 4/T2s0T exp(-2¸ t) s0t exp(2¸ s) dx dt = 4/T2/¸s0T exp(-2¸ t) (exp(2¸ t)-1) dt =4/T2/¸s0T (1-exp(-2¸ t)) dt =4/T2/¸ (T+1/2¸ (1-exp(-¸ T)) =4/¸ (1/T+1/2T2¸ (1-exp(-¸ T)) ¼ 4/¸/T

  27. Sample meansfor white noise • w is white noise • B(t)=s0t w(t) dt • B(t) is Brownian motion (Wiener process) • Var(B(t))=´ t (by definition) • ET=1/Ts0t w(t) dt = 1/T B(T) • Var(ET)=1/T2 var(B(T))=1/T2´ T = ´/T • 2 state Markov like white noise

  28. Sample meansfor Brownian motion • B(s)=B(t)+sts w(x) dx = B(t)+b s ¸ t • b and B(t) are independent • CBB(t,s) = E(B(t)B(s)) = E(B(t) (B(t)+b)) =E(B2(t))=´ t = ´ min{t,s} !!! • ET=1/Ts0t B(t) dt • Var(ET)=1/T2s0Ts0tCBB(t,s) ds dt • =1/T2s0Ts0T´ min{t,s} ds dt • =2/T2s0Ts0t´ s ds dt • =1/T2s0T´t2 dt • =1/T2/3´T3 = 1/3 ´ T

  29. Sample meansfor renewal with Pareto distributions • Var(ET) = 4/T2s0Ts0t RZ(t-s) ds dt • RZ(z) = C z1-® • Var(ET) = 4C/T2s0Ts0t (t-s)1-® ds dt = -4C/T2s0Tst0x1-® dx dt = 4C/T2/(2-®) s0Tt2-® dt = 4C/T2/(2-®)/(3-®) T3-® = 4C/(2-®)/(3-®) T1-® For ®¼ 1 right between white noise (s0) and Brownian motion (s-1) fractional Brownian motion (s-1/2) BH(t)=s0t (t-s)H-1/2 w(s) ds

  30. Self similarity • A process X is self similar with Hurst parameter H iff: a-H X(at) is equivalent to X(t) (up to finite joint distributions) CXX(s) = E(X(0)X(s))= (1/s)-2H E(X(0/s)X(s/s)) = s2H CXX(0,1) CXX(t,s)= E(X(t)X(s))= (1/s)-2H E(X(t/s)X(s/s))= = s2H CXX(t/s,1) -> s2H CXX(0,1) for t/s -> 0 CXX(t,t+s)= E(X(t)X(t+s))= E(X(t/(t+s))X((t+s)/(t+s)))= = (t+s)2H CXX(t/(t+s),1) -> (t+s)2H CXX(1,1) for t -> 1

  31. Self similarity • Y(n)=X(n)-X(n-1) • CYY(1,m) = E((X(1)-X(0))(X(1+m)-X(m))) =E(X(1)X(1+m))+E(X(0)X(m))-E(X(1)X(m))-E(X(0)X(1+m)) = m2H (E(X(1/m)X(1/m+1))+E(X(0)X(1))-E(X(1/m)X(1))-E(X(0)X(1/m+1))) = m2H (CXX(1/m,1/m+1)+ CXX(0,1)- CXX(1/m,1)- CXX(0,1/m+1)) = m2H (CXX(1/m,1/m+1) - CXX(0,1/m+1) + CXX(0,1)- CXX(1/m,1)) ¼m2H (CXX(0,1)+1/m D1+1/mD2 + D12/21/m2 + D21/21/m2 + D11/21/m2 + D22/21/m2 -(CXX(0,1)+1/m D2 + D22/21/m2) + CXX(0,1) -(CXX(0,1)+1/m D1+ D11/21/m2 )) = m2H (D12/21/m2 + D21/21/m2) = m2H-2 (D12+ D21)/2

  32. Frequency Domain • RZ(z) = C z1-® • log(RZ(z))=log(C) + (1-®) log(z) • CYY(1,m) = K m2H-2 • SYY(!) = C !1-2H • log(SYY(!))=log(C) + (1-2H) log(!)

  33. Distribution of files sizes

  34. Time averages (aggregated)

  35. Time averages (cont’d)

  36. Aggregated statistics

  37. Estimating the Hurst parameter

  38. Miniproject • Make a statistic on the filesizes of your file system. • Check for power tailed behaviour. • Simulate an M/G/1 queue with power tailed service times. • Compare with results for an M/M/1 queue with the same load: ½ = mean service time/mean interarrival time • Simulate an alternating renewal process with power tailed ”ON” distribution. • Compute an autocorrelation estimate. • Compute estimates of the 1-step increments of sample means. • Compute a power spectrum estimate.

  39. Summary LRD • Let fZ(z)=K z-® I(z ¸ z0) ®>1 • RZ(z) ¼(z/z0)1-® • CII(s) ¼ 2RZ(2s) ·(2s)2(H-1) (H - Hurst parameter, I indicates on period) • H>1/2 : Long Range Dependence (LRD) • LRD  ® < 2 • log(RZ(z))=log(C) + (1-®) log(z)

  40. Summary M/G/1 • M/M/1: Q=½/(1-½) • M/G/1: (Pollachek-Kinchine) Q=½ + (½2 + ¸2 var(S))/2/(1-½) • fS(s)=K s-® I(s ¸s0) ®>1 • E(S2) = K ss01s2s-® ds = K ss01s2-® ds = [s3-®]s01 /(3-®)

  41. Summary SS • A process X is self similar with Hurst parameter H iff: a-H X(at) is equivalent to X(t) (up to finite joint distributions) • Y(n)=X(n)-X(n-1) • CYY(1,m) ¼m2H-2 (D12+ D21)/2 • CYY(1,m) = K m2H-2 • SYY(!) = C !1-2H • log(SYY(!))=log(C) + (1-2H) log(!)

  42. Summary (Sample means) • ET = 1/T s0T I(t) dt • I(t) indicates on-state • Var(ET)= 4/T2s0Ts0t RZ(2(t-s)) ds dt • ¼ 4/¸/T (2 state Markov) • = ´/T (White noise) • = 1/3 ´T (Brownian motion) • = 4C/(2-®)/(3-®) T1-® (Power tail)

More Related