1 / 17

DEPFET Technology for future colliders

DEPFET Technology for future colliders. Carlos Mariñas IFIC-Valencia (Spain). 1. DEPFET ( DEpleted P- channel Field Effect Transistor): Technology invented by J. Kemmer & G. Lutz , 1987

yvon
Télécharger la présentation

DEPFET Technology for future colliders

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 Carlos Mariñas, IFIC, CSIC-UVEG

  2. DEPFET (DEpleted P-channelFieldEffect Transistor): Technologyinventedby J. Kemmer & G. Lutz, 1987 • J. Kemmer and G. Lutz: ''New semiconductor detector concepts'', Nucl. Instr. & Meth. A 253 (1987) 365-377 • SeveraldifferentapplicationsforAstrophysics and ParticlePhysics: • XEUS: Futureeuropean X-rayobservatorytoinvestigate the Early Evolution Stages of the Universe (early black holes, evolution of galaxies…) • BepiColombo: ESA projectto Mercury toinvestigatetheorigin and evolution of theplanet • X-FEL • ILC • BELLE-II → Technologychosenforthe new Vertex Detector 2 Carlos Mariñas, IFIC, CSIC-UVEG

  3. Why this technology? • Vertexing in futurecollidersrequiresexcellentvertexreconstruction and efficient heavy quark flavourtagging • See Prof. Ch.Damerell’stalk • Thisrequirementsimposeunprecedentedconstraintsonthe detector: • Highgranularityto cope withthehighdensity of tracks in the jets and thebackground • Highspatialresolution per layer <4mm (pixel size of 25x25mm2) • Fastread-out • Low material budget: <0.1%X0/layer (~100mm of Si) • Lowpowerconsumption • DEPFET • Measurementsmadeonrealistic DEPFET prototypeshavedemonstratedthatthe concept isone of the principal candidatestomeetthesechallengingrequirements 3 Carlos Mariñas, IFIC, CSIC-UVEG

  4. The DEPFET principle • Each pixel is a p-channel FET on a completelydepletedbulk (sidewarddepletion). Chargeiscollectedbydrift • A deep n-implantcreates a potentialminimumforelectronsunderthegate (internalgate) • Signalelectronsaccumulate in theinternalgate and modulatethe transistor current (gq≈500pA/e-) • Accumulatedcharge can be removed by a clearcontact • Small pixel size~25μm • r/o per row ~50ns (20MHz) (drain)Fullydepletedbulk • Noise≈100e-Small capacitance and first in-pixel amplification • Thin Detectors≈50μm • Internalamplification • Low power consumption: Readout on demand (Sensitive all the time, even in OFF state) GOAL 4 Carlos Mariñas, IFIC, CSIC-UVEG

  5. MIP source top gate drain clear bulk n+ p+ p+ n+ n+ p n s i internal gate x a + - - y - - - r t - - e + m - m y s + - n + - p+ rear contact DEPFET-Principle of Operation Potential distribution: internal Gate ~1µm Backcontact Drain 50 µm Source [TeSCA-Simulation] FET-Transistor integrated in every pixel (first amplification) Electrons are collected in „internal gate“ and modulate the transistor-current Signal charge removed via clear contact 5 Carlos Mariñas, IFIC, CSIC-UVEG

  6. source top gate drain clear bulk +20V n+ p+ p+ n+ n+ 0V 0V p n s i internal gate x a - - y - - - r t - e m m y s - n p+ rear contact DEPFET-Principle of Operation Potential distribution: internal Gate ~1µm Backcontact Drain 50 µm Source [TeSCA-Simulation] FET-Transistor integrated in every pixel (first amplification) Electrons are collected in „internal gate“ and modulate the transistor-current Signal charge removed via clear contact Carlos Mariñas, IFIC, CSIC-UVEG

  7. ILC prototype system • HybridBoard • DEPFET 64x256 matrix • Readout chip (CURO) • Steering chips (Switchers) • ProtectionBoard • Regulators • ReadoutBoard • 16 bit ADCsDigitization • XILINX FPGAChipconfig. and synchronizationduring DAQ • 128 kBRAMDatastorage • USB 2.0 boardPCcomm. 6 Carlos Mariñas, IFIC, CSIC-UVEG

  8. Hybrid board Clear sw gaTEsw DEPFET Curo • DEPFET Matrix • 64x128 pixels • Several pixel sizes, implants, geometries • CURO: • 128 channels • CUrrentReadOut • Subtraction of IpedfromIped+Isig • Switchers: • Steering chips • Gate: Selectrow • Clear: Clear signal 7 Carlos Mariñas, IFIC, CSIC-UVEG

  9. Operation mode: Row wise readout Clear SW DEPFET-matrix Gate SW Row wise r/o (Rolling Shutter) • Select row with external gate, read current, clear DEPFET, read current again  The difference is the signal • Low power consumption: Only one row active at a time; Readout on demand (Sensitive all the time, even in OFF state) • Two different auxiliary chips needed (Switchers) • Limited frame rate Drain Enable row – Read current (Isig + Iped) – Clear – Read current (Iped), Subtract – Move to next row 8 Carlos Mariñas, IFIC, CSIC-UVEG

  10. DEPFET Concept for a half ILC module • 10 and 25 cm long ladders read out at the ends • 24 micron pixel • design goal 0.1% X0 per layer in the sensitive region 9 Carlos Mariñas, IFIC, CSIC-UVEG

  11. Thinning : mechanical samples 6” wafer with diodes and large mechanical samples Thinned area: 10cm x 1.2 cm (ILC vertex detector dummy) Possibility to structure handling frame (reduce material, keep stiffness) 10 Carlos Mariñas, IFIC, CSIC-UVEG

  12. DEPFET achievements: Test Beam Setup x z y • Telescope: • 5 DEPFET planes • 32x24μm2 • CCG • 450 μm thick BEAM • DUT: • 1 DEPFET modules • Various pixel sizes • 450 μm thick 120 GeV ∏ • Scintillators: • 1 Big “Beamfinder” • 1 Finger “Beamallignment” • Triggering Trigger Synchronization via TLU(Trigger Logic Unit) 11 Carlos Mariñas, IFIC, CSIC-UVEG

  13. Test Beam Setup • General view • 6 Modules at once • 1 rotating module 12 Carlos Mariñas, IFIC, CSIC-UVEG

  14. My work • Calibration/optimization of differentgenerations of matrices: • PXD4-Clocked Cleargate. 128x64 pixels • PXD5-Common Cleargate. 128x64 pixels • PXD5-Capacitative CoupledCleargate. 256x64 pixels 13 Carlos Mariñas, IFIC, CSIC-UVEG

  15. 3x3 clustersignal • Test Beam • Data analysis (SNR, Residuals, Chargecollectionuniformity) σ≈4% ResY=1.34μm Preliminary 14 Carlos Mariñas, IFIC, CSIC-UVEG

  16. Mechanical/Thermalmeasurements and simulation (FiniteElementAn.) • Natural frequencies, selfweigthbowing, deformations • Conduction, convection, thermalstress • Powercycling • Thermalcharacterization of differentmaterialsforcooling (Al, Cu, TPG) Natural convection 15 Carlos Mariñas, IFIC, CSIC-UVEG

  17. Belle-II, SuperB, ILC, CLIC… Thank you very much! • The LHC is not the end… but just the beginning! 16 Carlos Mariñas, IFIC, CSIC-UVEG

More Related