1 / 35

DEPFET detectors for future colliders . Activities at IFIC, Valencia

DEPFET detectors for future colliders . Activities at IFIC, Valencia. Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales de Partículas Universitat de Barcelona. Carlos Mariñas, IFIC, CSIC-UVEG. Outlook.

ianna
Télécharger la présentation

DEPFET detectors for future colliders . Activities at IFIC, Valencia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEPFET detectorsforfuturecolliders. Activities at IFIC, Valencia Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales de Partículas Universitat de Barcelona Carlos Mariñas, IFIC, CSIC-UVEG C. Mariñas, IFIC, CSIC-UVEG

  2. Outlook C. Mariñas, IFIC, CSIC-UVEG

  3. Vertexingin futurecollidersrequiresexcellentvertexreconstruction and efficient heavy quark flavourtaggingusinglowmomentumtracks • Thisrequirementsimposeunprecedentedconstraintsonthe detector: • Highgranularity • Fastread-out • Low material budget • Lowpowerconsumption • DEPFET • Measurementsmadeonrealistic DEPFET prototypeshavedemonstratedthatthe concept isone of the principal candidatestomeetthesechallengingrequirements Vertexing in futurecolliders C. Mariñas, IFIC, CSIC-UVEG

  4. Each pixel is a p-channel FET on a completelydepletedbulk • A deep n-implantcreates a potentialminimumforelectronsunderthegate (internalgate) • Signalelectronsaccumulate in theinternalgate and modulatethe transistor current (400pA/e-) • Accumulatedcharge can be removed by a clearcontact • Fullydepleted • Largesignal • Fastsignalcollection • Lowcapacitance, internalamplification • Lownoise • Transistor ON onlyduringreadout • Lowpower • Complete clear • No resetnoise Features DEPFET principle C. Mariñas, IFIC, CSIC-UVEG

  5. Faradaycage • PC for data acquisition • Stack of powersupplies • Laser • Motorstages XYZ • Complete systemfor air and liquidcooling • Cooling blocks • Aluminiumcoils • Pulse generator IntroducingtheValencia’s set up C. Mariñas, IFIC, CSIC-UVEG

  6. Full electricaloptimization of matrices: Thisimpliesscansover a widerange of theoperatingvoltagestoachievethebestsignal-to-noise ratio. • Clear High/Low • Gate ON/OFF • Back • Bulk • Cleargate • Source • Calibration of thesystemusingradioactivesources • Gain of thesystem • ENC • Laser scans: Chargecollectionuniformity Matrixcharacterization C. Mariñas, IFIC, CSIC-UVEG

  7. Alreadytested at IFIC C. Mariñas, IFIC, CSIC-UVEG

  8. Blk D1 G1 Clg Cl S Cl G2 Clg D2 Innerstructure Set-up • Betterunderstanding of new structures • Differentgeometries (L-gate) • Implants • Directaccesstothesystem’sparameters • Complete clear • Chargecollection • Noise DEPFET Single-pixel (underconstruction) C. Mariñas, IFIC, CSIC-UVEG

  9. Test Beam C. Mariñas, IFIC, CSIC-UVEG

  10. Full electricalcharacterization of one DUT • Participate in theassembly and allignment of thetelescope • Parallel set-up in control room • Analysis of data • Test BeamCoordinators 2008 and 2009 (M.Vos) x z y BEAM 120 GeV ∏ Test Beam: Our role C. Mariñas, IFIC, CSIC-UVEG

  11. Voltagescans: Cross-checkoptimalsettings • VBiastothewafer 150-220V • VEdge • VClearHigh • Angular scan: Resolution vs. Clustersize • -5, -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 9, 12, 18, 36 • Beamenergyscan: Separation “multi-scattering-intrinsicresolution” • 20, 40, 60, 80, 120 GeV • Largestatistics • Chargecollectionuniformity • 3 Mevents in nominal conditions 3.5 TB of data 20 Millionevents Test Beam: Measurements C. Mariñas, IFIC, CSIC-UVEG

  12. Seedsignal Entries stotal=2,5mm Preliminary Preliminary Residual (sMSÅsTelÅsInt, mm) Preliminary T.B. Data analysis Distance (mm) BeamEnergy (GeV) C. Mariñas, IFIC, CSIC-UVEG

  13. Thermalsimulation First DEPFET thermalmock-up Thermalstudies: Simulation and measurements C. Mariñas, IFIC, CSIC-UVEG

  14. Thermalmeasurements • Influence of conduction • T of cooling blocks • Bumpbonding • Influence of convection • Air speed • Air temperature • Study of new materials Temperature (ºC) Air speed (m/s) New materials Temperature (ºC) DT normalized (K/mm2) Power (W) Power (W) C. Mariñas, IFIC, CSIC-UVEG

  15. Thermalsimulation • Modelimplemented in SolidWorksforfuturemechanicalstudies • ANSYS studiescalibratedwith real data C. Mariñas, IFIC, CSIC-UVEG

  16. Switchingmechanismisintroduced Influence of air and liquidcoolingstudies A couple of movies… C. Mariñas, IFIC, CSIC-UVEG

  17. Vertexing in FutureColliders • Veryhardconditions • Radiation (10MRad forSuperBelle) • Background • Reduced material budget • Unprecedentedgranularity • Powerconsumption and heatdissipation • Improvement of thedetector’s performance isneeded • New generation of pixel detectors try to cope withthisrequirements • DEPFET: One of themostpromisingtechnologiesforvertexing and tracking Conclusions C. Mariñas, IFIC, CSIC-UVEG

  18. Matrixcharacterization • 2 differentgenerationscharacterized • Full electricaloptimization • Calibration • Chargecollectionuniformity • Workingon Single Pixel set-up • Test Beam • Optimization of DUT • Instalation and alignment of thetelescope • Data analysis • Thermalstudies • DEPFET thermalmock-up • Study of new materialsforbettercooling • Influence of air/liquidcooling • Simulation Conclusions: DEPFET in Valencia C. Mariñas, IFIC, CSIC-UVEG

  19. Backupslides C. Mariñas, IFIC, CSIC-UVEG

  20. Supportstructures: • FEA models of mechanicalproperties • Natural frequencies • Rigidity • Stability • Deformations • Validationwithmock-up • Module: • Simulationsusing FEA: (FiniteElementAnalysis) • Mechanicaleffects: Strenght of module • Thermaleffects: Cooling • Validationwithprototypes Mechanics C. Mariñas, IFIC, CSIC-UVEG

  21. Discarded • Material • Granularity DEPFET CompetitorsforSuperBelle C. Mariñas, IFIC, CSIC-UVEG

  22. Competitorsfor ILC C. Mariñas, IFIC, CSIC-UVEG

  23. Double pixel structure C. Mariñas, IFIC, CSIC-UVEG

  24. ADU 310.4 209.9 22 30 E (keV) • Ba-133 (30keV g-ray) → 310.4 ADC Units • Cd-109 (22keV g-ray) → 209.9 ADC Units FIT Slope=Gain b=12.5 ADC/keV y=a+bx Noise Gain Energytocreate e-h Gain and noise C. Mariñas, IFIC, CSIC-UVEG

  25. S/N for a MIP 1.- ATLAS supposition: 1 MIP→22300 pairs e-h in 285μm of Si 2.- Our DEPFET has 450μm of Si 3.- The scale factor between Ba-133 30keV g and a MIP is: 4.- The S/N of 30keV Ba-133 grayscaledto a MIP: C. Mariñas, IFIC, CSIC-UVEG

  26. Noise in current 1.- ADC dynamic range: 2 V – 14 bits -> 2.- trans-impedance amplifier gain = 1 V / 50 mA 3.- 15 ADC counts of noise C. Mariñas, IFIC, CSIC-UVEG

  27. A-GATE B-CLEAR • Switchers A (Gate) and B (Clear) for CLG CURO Introducing the device C. Mariñas, IFIC, CSIC-UVEG

  28. VClear-High VClear-High VClear-Low VClear-Low Amp/mV Time/ms VCleargate-High VCleargate-Low Clocked-Cleargate Common-Cleargate CLG vs CCG VCommon-Cleargate C. Mariñas, IFIC, CSIC-UVEG

  29. Noise peak #Entries Signal peak Incomplete clear Background Effect on spectrum Leackage Current ADU C. Mariñas, IFIC, CSIC-UVEG

  30. -3.2V 7V 1.8V 1.3V AD8129 OUT IN R10 +IN Iin -IN 6mV R50 150pF -5V 5V 14V REF R50 R10 FB AD8015 39kΩ >2V -7V -8.2V Vsubstr 2kΩ 18kΩ Amplifiers C. Mariñas, IFIC, CSIC-UVEG

  31. 10V C. Mariñas, IFIC, CSIC-UVEG

  32. C. Mariñas, IFIC, CSIC-UVEG

  33. Double pixel cell 33 x 47 µm2 Double pixel structure Actual size of two pixels C. Mariñas, IFIC, CSIC-UVEG

  34. GND Pulsers Sequencer PC VGATE 55Fe Shaper ADC Light VDRAIN C. Mariñas, IFIC, CSIC-UVEG

  35. Correlated Double Sampling Scheme CDS C. Mariñas, IFIC, CSIC-UVEG

More Related