810 likes | 1.13k Vues
國立台北科技大學電腦與通訊研究所 李仁貴 教授 (Prof. Ren-Guey Lee) evans@ntut.edu.tw Date : 03.14.2013. 具有生理量測功能之智慧衣 Vital-sign Monitoring Garments Using Textile Electrodes for Healthcare Applications. 可穿戴式 (Wearable) 的電腦的組成功能. VDC 認為可穿戴式的電腦定義須符合以下條件: 具有一個 CPU 硬體 具有可自行設定功能的 軟體 裝置 系統 可穿戴 於使用者身上
E N D
國立台北科技大學電腦與通訊研究所 李仁貴 教授 (Prof. Ren-Guey Lee) evans@ntut.edu.tw Date : 03.14.2013 具有生理量測功能之智慧衣 Vital-sign Monitoring Garments Using Textile Electrodes for Healthcare Applications
可穿戴式(Wearable)的電腦的組成功能 VDC認為可穿戴式的電腦定義須符合以下條件: • 具有一個CPU硬體 • 具有可自行設定功能的軟體裝置 • 系統可穿戴於使用者身上 • 具有有線/無線通訊裝置連結穿戴者電腦 • 穿戴智慧型紡織物具有GPS、RF 或不同目的的感測晶片 VDC: Venture Development Corporation
Levi Strauss & Philips研究實驗室所研發的夾克 • 第一件含金屬線的電子服飾將推廣到市場上,有四種款式以提供大眾選用,在這些服飾中所內藏式的金屬線連接到手機、MP3隨身聴、內建式喇叭、麥克風及顯示器,當衣服送洗時,裝置及控制盤可以分離;然而,除了維修外,內部的金屬絲與連接器不可以自行移除。這些夾克針對相容性及更新的選擇也有很大的限制。
電子互動性紡織品的發展 • 電子互動性紡織品在許多傳統的紡織品應用上將會開發出一個特殊的發展市場;電子織物技術的發展存在許多機會,諸如:流行與傳統服飾間、居家用及商業工作用、軍事用、醫藥用以及工業紡織品用的市場,電子互動性紡織品技術已被應用在許多方面,諸如:通訊、娛樂、健康及安全防護…等方面上。 • 未來電子互動性紡織品技術將直接整合多重式的電子產品以善用其資源分享的方式,來增加紡織品功能的可攜帶性、舒適性及便利性。舉例來説,通訊裝置可以被整合到產品上面,諸如右圖上的電子互動性紡織品及右圖下所示的外套上,其整合了CD隨身聽、MP3隨身聽、電動玩具面板、數位相機及錄影機、以及隨著音樂的律動而會改變顏色的電子化服飾,都已經被發展出來了。組合在袖子上的鍵盤紡織品將可以用來撥電話、打字、以及放音樂,家中或辦公室中內用的電子互動性紡織品可以用來控制燈光、溫度或是其它電子設備。電子互動性紡織品也被發展來偵測壓力或是位移,諸如:敏感的醫療紡織用品、工程用布、運動服及自動座椅。
電子互動式紡織品的發展潛力 • 電子互動式紡織品擁有很大的潛力來改善目前人體保健的常規,以提供監測呼吸、心律、應力程度、及身體溫度,電子織物可以增加病人的移動性、提供便利性及改善有健康問題者或殘障者的生活品質。高效能電子運動服可以用來追蹤以及強化效能,尤其是在健身房的建身者以及體能極限運動的活動。在右圖中的智慧型服飾,其特色是整合了感測性纖維來監測及展示脈衝、血壓、時間、距離、速度、卡路里熱量;此類的感測器也可以記錄手臂的活動,以改善高爾夫球或網球的節奏感、體溫、也可以用來發展健身者所適用的健身器材。 • 知道如何合併新興的電子互動式紡織品技術到其公司所發展的新產品上的紡織公司將可以建立及維持其財經市場及競爭力的優勢,可穿戴式電子產品在非紡織品上也已經找到許多機會,諸如:嵌入式的微晶片及數位化的珠寶,積極的成衣服飾公司也正在發展策略聯盟及開拓互動式服飾的市場;這些研究整合了新興的電子互動式紡織品技術領域,也正考驗著目前電子織物技術的發展及功能。
使用含GPS的衣服來追蹤出自己小孩的位置所在 • 紡織品若整合了全球定位系統(GPS)的感測裝置,便可以偵測到使用者在任何時間及氣候下的正確位置,在右圖上中的這套滑雪衣便是使用電子織物技術來整合GPS,其可以很快地定位出穿著者的位置,以及可以加熱以達到保暖的功能。如右圖下所示,當父母的可以很容易地使用含GPS的衣服來追蹤出自己小孩的位置所在。
電子機能紡織品(Electoractive Fabrics) • “以生活電子技術融入互動式紡織品中”是電子機能紡織品 (Electoractive Fabrics)的發展重點;所以包含:流行設計、工商業活動、軍事醫藥或是通訊、娛樂、健康及安全防護等生活需求,均可能是電子機能紡織品的應用範圍。智慧機能紡織品亦如奈米技術般,主要以材料技術為重點,再進行結構與產品應用面的機能設計而成,因此其所發揮的特徵多數來自於材料的互動式變化,諸如:感壓感溫、形態記憶、變色、溫控及微分子釋放等;其中的感測性紡織品除部份使用電子技術外,研發核心仍集中於高分子材料與纖維及智能織物最受注目,此類型產品主要應用於環境變化的監測與回應上,包含:溫度、濕度、壓力脈衝、生化毒氣等 資料來源:紡織人纖e化的急先鋒—導電紗及電子織物 程彥鈞
紡研所:未來4年智慧型紡品商機500億美元 • 隨著產業外移及受到中國大陸、南韓等低價搶單的影響,導致紡織業競爭力下滑,為開創新局,紡織業除朝向機能性產品發展外,也結合紡織、電子、資訊三大產業,跨入智慧型紡織品領域;紡織綜合研究所預估,智慧型紡織品市場未來4年商機高達500億美元。 • 根據VDC(Venture Development Corporation)2006年最新調查報告,智慧型紡織品整體市場在2003到2008年間,5年的平均成長率保守估計為11.3%,樂觀估計可達28.7%。 • 依據DRA(David Rigby Associates)資料估計,至2010年為止,產業用紡織品每年平均有4%至7%的成長;智慧型紡織品提供紡織、電子及資訊三大產業的結合,這兩年內三大產業聯合創匯已達270 億美元,若能結合現有的人才資源及創意應用,創匯倍增的綜效將更能在短期內見到,同時紡織業也能順利完成產業結構的調整,是中小型規模的紡織業者最佳轉型契機。 • 醫療檢測費用佔醫療負擔中很大的比例,加上運動休閒與保健風潮日益受到重視等因素,隨身行動的生理感測紡織品需求性逐漸被重視,消費市場愈趨活絡,紡織綜合研究所預估,台灣健康防護等醫療紡織品市場規模將近新台幣40億元,全球市場將超過1.4兆元。
台灣對智慧型紡織品的內需每年約新台幣40億元2006/9/16台灣對智慧型紡織品的內需每年約新台幣40億元2006/9/16 • 2010年全球智慧型紡織品市場將超過500億美元,其中運動監視服飾在台灣的市場,保守估計每年約新台幣2億至4億元,遠距照護系統紡織品,台灣內需每年約新台幣40億元。 • 所謂智慧型紡織品就是結合紡織、電子、資訊三大產業的高科技產品,將帶來生活上許多轉變,從居家健康照護、生理感測、遠端醫療到運動休閒,都將更加的方便性、安全性及科技性,這些產品跟以往所認知的服飾及紡織品不一樣。 • 智慧型紡織衣可應用產品包括運動衣、嬰兒衣、MP3太陽能外套;智慧織物則可以用在卡路里監測跑步機、保健桌布、生理感測多媒體遊戲、電擊按摩;保健紡織品則用於心電感測汽車方向盤、音樂地毯、感壓壁布、織物按摩器。 • 台灣擁有紡織、電子、資訊三大世界級產業,絕對是發展智慧型紡織品的最大優勢,透過經濟部科技專案計畫「高科技紡織品研究與開發計畫」執行,研發智慧型紡織品跨領域技術整合與設計特徵,更符合台灣產業彈性機動的特質。 • 整體而言,在強調分工與創新的今日世界,異業結合乃是突破現狀的最佳策略,智慧型紡織品的龐大商機為台灣紡織業跟電子業勾勒一個美好的市場遠景,預期歷經3年時間研發成功的智慧型紡織品,將可帶領台灣企業快速搶奪全球智慧型紡織品新興市場先機。
電子互動式紡織品國際發展現狀-1 • (1)電池纖維:依據英國新科學家雜誌報導,德國斯圖加特大學設計出可用太陽能發電的導電纖維,這種電池纖維可承受紫外線以及100℃的溫度照射,並且可在洗衣機中洗滌;主要設計係由三層無定形矽(即非結晶矽)疊成含陰極、中性材、陽極之三明治結構,並以上、下層含多餘或缺乏正負電電子形成空穴,彼此再因光子的撞撃而形成交互電流,以產生必要的電能。此項技術最大的挑戰在於:1.如何促使所有纖維互相接觸,以集中電力;2.如何分散衣料中不同能量發射點的電流,以歸納形成可與外界連接的電插頭。 • (2)感測線:以杜邦公司之Electrotextile纖維絲為例,係以一般纖維和金屬絲複合而成,並藉由紡織成形,再與半導體和電池相連結而發揮多種功能;例如:應用於電子T恤衫內的無線信號傳送裝置,可以把穿著者的健康狀況資訊送給電腦,再由電腦對身體狀況作出檢查結論;應用於汽車座椅套時,可量測出乘坐人的的體溫以及體重,並可對應自動設定安全氣囊的安全標準;應用於軍裝時,通過雷達就可以測知軍人的活動情況,並確認所處的位置,最重要的是可讓軍服裝備輕量化。 資料來源:紡織人纖e化的急先鋒—導電紗及電子織物 〔中國紡織工業研究中心 技術及產品開發部 程彥鈞〕
電子互動式紡織品國際發展現狀-2 (3)義大利形狀記憶合金纖維襯衫:係使用鎳鈦記憶合金纖維和尼龍混織而成,其藉由記憶合金之形狀定溫度恢復機能,甚至可用體溫來熨平織物。 (4)美國Polartec電熱毯:以不鏽鋼纖維為導熱材,進行紡織品設計與加工,當通入適量電能後,即產生溫熱保暖效果。 (5)美國陸軍研究中心隱形衣:係以纖維視訊傳輸及光學反射原理,將包含顏色、光線、服飾圖案等,融入於背景環境中,而達到光學偽裝效果。 資料來源:紡織人纖e化的急先鋒—導電紗及電子織物 〔中國紡織工業研究中心 技術及產品開發部 程彥鈞〕
英國Gorix織物 • Gorix公司利用織物低伏特低耗能的特性,開發出一個具有恒溫加熱特性的導電性紡織品,其有一個重要的技術性關鍵,即是經向和緯向紗支數存有10%的差異,因此電流通過的不同方向將會有不同的加熱行為。應用Gorix織物所開發的量測感應溫度系統,主要是利用其電阻具有隨著溫度呈現穩定的線性變化的特性而達成系統功能;一個薄型條狀Gorix織物通常使用於溫度偵測器中,而這些感測器一般用尼龍梭織物保護套包覆,再用具有遮蔽性聚酯膠帶以三明治方式包裝。另一個潛在市場是將其加入消防人員所穿著的夾克背後,當火災現場火舌噴出剛好在消防人員的背後時,Gorix織物將可立即偵測出火源變化和活動情況,以某種警示信號通知受威脅的穿著者,使其可即時避開火舌的危害。另外其也被應用於熱銅人溫度感應器上,用以測試防護服和運動休閒服的效果。 資料來源:紡織人纖e化的急先鋒—導電紗及電子織物 〔中國紡織工業研究中心 技術及產品開發部 程彥鈞
英國Gorix織物的其他應用 A.嬰兒餵奶瓶用包纏式加熱器。 B.醫療方面提供人體選擇性的局部加熱,保暖早產兒的保溫箱和緊急用電毯。 C.針對己步入老人化社會之產品需求,提供即經濟又有效率的加熱方式。 D.地毯和蓆墊下之加熱。 E.應用於滑雪裝、登山服、極地探險或深海潛水服等運動休閒服。 F.加熱馬毯和特殊加熱綁腿,對馬的各種肌肉問題有良好的治療效果, 目前己商業化生 產銷售,稱之為紅外線加熱毛毯和綁腿。 G.運輸業用傢飾產品。 H.複合材料加工生產過程中,固化處理時溫度控制的加熱元件。 資料來源:紡織人纖e化的急先鋒—導電紗及電子織物 〔中國紡織工業研究中心 技術及產品開發部 程彥鈞
Research Example 1 Modified bipolar textile electrode of embroidered textilewith conductive yarn; snaps are directly attached to the electrodes to connect with the wireless transmitter
Chest-belt type Cross type
X type Cross-X type
Conclusions To discover the most suitable type of garment for monitoring the electrical activity signals of the heart, we made four types of modular garments with textile electrodes, and performed two kinds of experiments: measuring the dynamic displacements of electrodes and measuring the electrical activity signals of the heart. According to the result of the first experiment, the “cross-type” garment had the least amount of displacement.
Magic System Description (cont.) Fig. 1. MagIC system used for the telemedicine application. Textile Transducer for Respiratory Activity ECG Textile Electrodes
Magic System Description (cont.) • The system can thus be used for : • 1) a telemetric monitoring (data are transmitted via bluetooth from MagIC to a proximal monitoring station located within a range of 20–40 m from the subject); • 2) a remote monitoring (data are transmitted via bluetooth to a palm computer or a smartphone that retransmits data in real time through a Wi-Fi or cell phone connection to a remote computer); • 3) a 24/48-h Holter monitoring (data are directly stored on the local memory card and are read at the end of the whole recording period).
Application • We customized an integrated system previously developed in our lab. This system included the MagIC device for the vital signs assessment, a touchscreen computer with a dedicated software for data acquisition, and a UMTS USB dongle for data transmission. Fig. 2. Overall architecture of the system implemented for the home monitoring of CHF patients.
Application (cont.) • Through text and voice messages the program : • 1) checks whether the patient has worn the smart garment; • 2) collects data from the garment for 3 min and; • 3) sends an email with the recorded data to one or more caregivers (three different cardiologists in our validation study) through the UMTS dongle. • Subsequently, a second procedure concerning the HEARTFAID project is activated. Fig. 3. Example of ECG (upper panel) and respiratory data (lower panel) transmitted by email to the caregiver.
Application (cont.) • Three patients (age: 63, 72, and 82 years), suffering from heart failure and recently discharged from the hospital, were recruited. Patients were asked to perform a telemonitoring session of 3 min every morning for 30 days from their home. Fig. 4. Patient during the monitoring session.
Application (cont.) • Results of this study indicated that the system behaved correctly in 85 out of 90 sessions (94%), while in five cases a second session was required due to UMTS traffic congestion. • The three cardiologists involved in the study visually evaluated the quality of the received signals. • In the vast majority of the cases (96.7%), this approach was found to be adequate for a remote daily check of the patient’s health condition and the use of email appropriate for a direct visualization of patient’s information.
Application (cont.) • The MagIC system was also used to investigate the effects of hypoxia during sleep and over the 24 h in healthy subjects at high and very high altitude on Mount Everest slopes. • A large research mission aimed at • 1) assessing the physiological effects of altitude; • 2) identifying possible countermeasures to altitude sickness; and • 3) translating these findings into diagnostic and therapeutic maneuvers for patients affected by chronic diseases associated with limited oxygen availability.
Application (cont.) • For this study, the standard MagIC system was modified in order to meet the specific requirements of the mission. • The first relevant change concerned the use of polypropylene instead of cotton as support yarn of the vest. • The second change we made was a modification to the portable electronic board to allow the additional recording of signals originating from an external finger pulse oximeter. • Finally, the third change concerned the positioning of the electronic board.
Application (cont.) ↑Fig. 5. Left panel: the system adapted for the HIGHCARE mission. Right panel: subject wearing the system; the electronic board was located in a pocket placed at the thorax level, not to interfere with the climber’s activity. ←Fig. 7. Comparison of setup complexity between a traditional portable polysomnografic device (left and central subjects) and the MagIc system (right subject).
Application (cont.) Fig. 6. Segment of data recorded during sleep at 6800 m. Plotted signals are (from top) ECG, respiration, three accelerometric components (X,Y,Z), finger pulse, and oxygen saturation. Note the presence of central apneas in the respiratory signal.
Application (cont.) • On this basis, only 4 recordings out of 115 were discarded (3.5%). The average artifact rate for the remaining 111 recordings was quite low (5.0% ± 0.6%, mean ± SE). Fig. 8. Distributions of the artifact rate in the subgroups of recordings performed during the 24 h (left panel) and during sleep (right panel).
Conclusion • These promising observations should now stimulate studies on the impact of this telemedicine approach on patients’ quality of life, health care costs, and cardiovascular events rate through large scale, randomized outcome trials of sufficient duration. • The setup easiness, signal quality, and comfort, demonstrated by the MagIC system at high altitude on Mount Everest, open interesting perspectives for a more extensive use of wearable sensors not only in routine clinical activities but also for checking the health status in extreme environmental conditions.
Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing Carey R. Merritt, H. Troy Nagle, Fellow, IEEE, and Edward Grant, Senior, ” Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing,” IEEE Transactions on Information Technology in Biomedicine, Vol.13,No. 2, March 2009. Advisor: Ren-Guey Lee Speaker: Fu-Yuan Hsing Date: 2012/1/5
Outline • Introduction • Design & Fabrication • Experimental result • Conclusion • Reference
Introduction • Dry electrodes are generally biocompatible with the skin because they do not use adhesive or gel membranes. Such membranes are commonly used in commercial Ag/AgCl electrodes and can cause serious skin irritation, including dermatitis. • Dry electrodes do, however, suffer from noise interference. A common solution used to suppress noise in dry electrode signals is a buffer amplifier. • Fabric-based active electrodes are produced by screen printing a buffer circuit pattern and electrode onto a nonwoven textile. Thereafter, the electrical components are directly attached to the fabric circuit to produce an active electrode.
Design & Fabrication • The design is based on a voltage follower circuit implemented with a few discrete components. • The first version involved screen printing the circuit onto a nonwoven textile and directly attaching the SMD components to the textile circuit. The second version explored the possibility of using an Interposer, thereby allowing placement of the circuit and its components on a much smaller PCB. Fig. 1. Active electrode schematic.
Design & Fabrication (cont.) • A. Direct-Attach Active Electrodes Fig. 2. Active electrode screen/stencil design using home plate pattern.
Design & Fabrication (cont.) Fig. 3. Encapsulation patterns. (a) Regular pattern. (b) Stress relief pattern. Fig. 4. Fabricated direct-attach active electrode. (a) Screen-printed electrode (bottom view). (b) Assembled circuit (top view). (c) Active electrode with encapsulated components (top view). (d) Active electrode with carbon–rubber electrode added (bottom view).
Design & Fabrication (cont.) • B. Interposer Active Electrodes • Interposers range from adapter boards that convert package technologies. • In our case, the interposer was used to connect SMD devices to an electronic textile circuit having somewhat larger feature size limitations than SMDs. • Using an interposer simplifies the electronic textile circuit, thereby reducing the chance of circuit failure through cracked lines or broken bonds between the electronic textile and SMD components.
Design & Fabrication (cont.) Fig. 5. Picture of interposer design. (a) Top view. (b) Bottom view. (c) Active electrode design for interposer approach.
Design & Fabrication (cont.) Fig. 6. Picture of fabricated interposer active electrode. (a) Interposer attached to fabric after step five. (b) Finished active electrode (top view). (c) Finished active electrode (bottom view).