1 / 26

Food Safety & Toxicology (3)

Food Safety & Toxicology (3). Antinutritives. Antinutritives can also cause toxic effects by by causing nutritional deficiencies or by interference with the functioning and utilization of nutrients.

zbigniew
Télécharger la présentation

Food Safety & Toxicology (3)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Food Safety & Toxicology (3)

  2. Antinutritives • Antinutritives can also cause toxic effects by • by causing nutritional deficiencies or • by interference with the functioning and utilization of nutrients. • Antinutritives can interfere with food components before intake, during digestion in the gastrointestinal tract, and after absorption in the body.

  3. 1. type A: substances primarily interfering with the digestion of proteins or the absorption and utilization of amino acids antiproteins2. type B: substances interfering with the absorption or metabolic utilization of minerals  antiminerals3. type C: substances that inactivate or destroy vitamins or otherwise increase the need for vitamins  antivitamins Type of Antinutritives

  4. 1. Antiproteins • Protease inhibitor  proteins which inhibit proteolytic enzymes by binding to the active sites of the enzymes. • Source: many plants (soybean, potatoes), and in a few animal tissues, eggs • Stability: heat labile : Autoclaving soybeans for 20 min at 115°C or 40 min at 107 to 108°C Prior soaking in water for 12 to 24 h makes the heat treatment more effective. Example: Boiling at 100°C for 15 to 30 min is sufficient to improve the nutritional value of soaked soybeans.

  5. Continued…. heat resistant: Pasteurization for 40 sec at 72°C destroys only 3 to 4%, heating at 85°C for 3 sec destroy 44 to 55%, heating at 95°C for 1 hr destroy 73% of the inhibitor. Ex: trypsin inhibitor in milk, chymotrypsin inhibitor in potatoes

  6. Lectins • Lectins is proteins that have highly specific binding sites for carbohydrates. The majority of the lectins are glycoproteins. • Source: plants (legumes such as peanut, soybean, etc), potato, banana, mango, and wheat germ. • Mechanism: disrupt small intestinal metabolism and damage small intestinal villi via the ability of lectins to bind with brush border surfaces in the distal part of small intestine. • Reduction: Heat processing can reduce the toxicity of lectins low temperature or insufficient cooking may not completely eliminate their toxicity, as some plant lectins are resistant to heat.

  7. 2. Antiminerals • Substances interfering with the utilization of essential minerals • Source: vegetables, fruits, and cereal grains.

  8. Phytic acid • Phytic acid, the hexaphosphoric ester of myo-inositol, is a strong acid. • Phytic acid has been shown to have a negative effect on iron absorption in humans. • Mechanism: Phytic acid prevents the complexation between iron and gastroferrium, an iron-binding protein secreted in the stomach.

  9. Reduction: - phytase activity can reduce the phytic acid level. - vit D consumption Calcium absorption is influenced not only by dietary phytate but also by vitamin D and lipids. If vitamin D is limiting in the diet, calcium absorption will be less efficient and the phytate effect will become more pronounced. - food processing: the activity of phytase drastically reduces the phytate content of dough during bread-making. • Source Phytase: plants (soybeans, cereal grain) Phytase is an enzyme which catalyzes the dephosphorylation of phytic acid.

  10. Oxalic acid • Oxalic acid (HOOC–COOH) is a strong acid, it can induce toxic as well as antinutritive effects. To humans, it can be acutely toxic (4 to 5 g to induce any toxic effect) • Interference on calcium absorption • Negative effects  oxalate/calcium ratio of foods higher than 1 may decrease the calcium availability • Reduction: Consumption of foods rich in calcium, such as dairy products and seafood, and enhanced vitamin D intake

  11. Dietary fiber • food components derived from plant cell walls that are not digested by the endogenous secretions of the human digestive tract. • Dietary fiber consists of pectic substances, hemicelluloses,plant gums and mucilages, algal polysaccharides, celluloses, and lignin. • dietary fiber is a protective factor against many diseases e.g., colon cancer. • The various types of dietary fiber components have many reactive groups, including –COOH, –HPO3H, –OH, –SO3H and –NH2, to which metals, amino acids, proteins, and even sugars can be bound.

  12. There are different ways of binding to dietary fiber: - First, fiber components of many food products act like ion exchangers. Their binding capacity depends on pH and ionic composition of the bowel contents. - Secondly, amino acids and proteins are bound to dietary fiber. A diet containing 15% cellulose can cause a decrease in nitrogen absorption of as much as 8%. Carrageenans, which are highly indigestible, can cause a decrease in nitrogen absorption of about 16%.

  13. Gossypol • This antinutritive is a yellow pigment present in all parts of the cottonplant. The highest levels are found in cottonseed. • Gossypol exists in three tautomeric forms: phenolicquinoidtautomer (I), aldehyde (II), and hemiacetal (III). • It forms insoluble chelates with many essential metals, such as iron, and binds to amino acid moieties in proteins (esp. lysin) • gossypol can reduce the availability of food proteins and inactivate important enzymes. • Processing removes 80 to 99% of the gossypol.

  14. 3. Antivitamins • Mechanism: a group of naturally occurring substances which : - can decompose vitamins, - form unabsorbable complexes with them, - interfere with their digestive or metabolic utilization. • ascorbic acid oxidase, antithiamine factors, and antipyridoxine factors

  15. Ascorbic acid oxidase • is a copper-containing enzyme that mediates : 1. oxidation of free ascorbic acid  dehydroascorbic acid 2. dehydroascorbic acid  diketogulonic acid, oxalic acid, and other oxidation products • Source: fruits and vegetables such as cucumbers, pumpkins, lettuce, bananas, tomatoes, potatoes, carrots, and green beans. • The enzyme is active between pH 4, about 38°C. • Being an enzyme, ascorbic acid oxidase can be inhibited effectively by blanching of fruits and vegetables.

  16. Antithiamine factors • Antithiamine factors can be distinguished as thiaminases, tannins, and catechols. • The interaction with vitamin B1 can lead to serious neurotoxic effects as a result of vitamin B1 deficiency • Source: Thiaminases are found in many fish species, freshwater, saltwater species, and in certain species of crab. • Mechanism: interact with vitamin B1 (thiamine), antithiamine factors are enzymes that split thiamine at the methylene linkage

  17. Reduction: cooking destroys thiaminases in fish and other sources. • Antithiamine factors can also be of plant origin. Tannins, occurring in a variety of plants, including tea inhibition of growth in animals and for inhibition of digestive enzymes. • Tannins are a complex of esters and ethers of various carbohydrates. A component of tannins is gallic acid.

  18. Antipyridoxine factors • A variety of plants and mushrooms contain pyridoxine (a form of vitamin B6) antagonists • The antipyridoxine factors have been identified as hydrazine derivatives • Source: mushroom • Reduction: Immediate blanching after cleaning and cutting can reduce the substance • Mechanism: condensation of the hydrazines with the carbonyl compounds pyridoxal and pyridoxal phosphate — the active form of the vitamin — resulting in the formation of inactive hydrazones

  19. Effect processing on antrinutritional content

  20. Food Chemistry. Volume 58, Issues 1-2, January-February 1997, Pages 59-68 Effect of processing methods on nutrients and anti-nutritional factors in cowpea N. Wanga, *, M. J. Lewisa, J. G. Brennana and A. Westbyb a Department of Food Science and Technology, University of Reading, Whiteknights, Reading RG6 6AP, U.K.b Natural Resources Institute, Central Avenue, Chatham Maritime, Chatham, Kent M E4 4TB, U.K. The combined effects of soaking, water and steam blanching on the nutrients, oligosaccharides and trypsin inhibitor activity (TIA) in cowpea were investigated. The combination of soaking and steam-blanching had less effect on losses of nutrients than did soaking and water-blanching. Steam blanching resulted in higher reduction in TIA than water blanching. However, water blanching reduced more oligosaccharides in cowpea than steam blanching did. The effect of soaking on starch gelatinization was not significant during water-blanching. However, the influence of soaking on starch gelatinization was significant when it was combined with steam-blanching

  21. Food ChemistryVolume 88, Issue 1, November 2004, Pages 129-134 Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation Magdi A. Osman • Food Science and Nutrition Department, College of Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia Abstract Effects of traditional fermentation on enzyme inhibitors, phytic acid, tannin content and in vitro digestibility of three local sorghum varieties were investigated. During a 24 h fermentation, enzyme inhibitory activities were significantly decreased. Trypsin inhibitory activity was reduced by 58%, 43% and 31% in Hamra, Shahla and Baidha, respectively, whereas amylase inhibitory activity was reduced by 74, 75% and in the three varieties after a 24 h fermentation. Phytic acid contents of the three varieties were markedly reduced as a result of fermentation. Tannin content of Hamra, Shahla and Baidha were significantly reduced by, respectively, 31%, 15% and 35% after fermentation. Fermentation significantly improved the in vitro digestibility of sorghum proteins.

More Related